Large Deviations for the Fermion Point Process Associated with the Exponential Kernel

For the fermion point process on the whole complex plane associated with the exponential kernel $$e^{z\bar{w}}$$, we show the central limit theorem for the random variable ξ(Dr, the number of points inside the ball Dr of radius r, as r → ∞ and we establish the large deviation principle for the random variables {r−2ξ (Dr), r > 0}.

[1]  A. Soshnikov,et al.  Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields , 1999, math-ph/9907012.

[2]  J. Hannay,et al.  Exact scattering theory for any straight reflectors in two dimensions , 2003, physics/0303093.

[4]  Lebowitz,et al.  Gaussian fluctuation in random matrices. , 1994, Physical review letters.

[5]  Random Analytic Chaotic Eigenstates , 1999, chao-dyn/9901019.

[6]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[7]  J. Hannay,et al.  Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .

[8]  J. Kahane Some Random Series of Functions , 1985 .

[9]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .

[10]  Ph. A. Martin,et al.  The charge fluctuations in classical Coulomb systems , 1980 .

[11]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[12]  Mikhail Sodin Zeroes of Gaussian analytic functions , 2000 .

[13]  Alexander Soshnikov Gaussian limit for determinantal random point fields , 2000 .

[14]  Boris Tsirelson,et al.  Random complex zeroes, III. Decay of the hole probability , 2003 .

[15]  Mark R. Dennis,et al.  Saddle points in the chaotic analytic function and Ginibre characteristic polynomial , 2002, nlin/0209056.

[16]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[17]  Yuval Peres,et al.  Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process , 2003, math/0310297.

[18]  G. Manificat,et al.  Large charge fluctuations in classical Coulomb systems , 1993 .

[19]  Brian Rider,et al.  Order Statistics and Ginibre's Ensembles , 2004 .