Mechanical Properties of Dragline Silk Fiber Using a Bottom-Up Approach

We propose a molecular-based three-dimensional (3D) continuum model of dragline silk of Araneus diadematus, which takes into account the plasticity of the β-sheet crystals, the rate-dependent behavior of the amorphous matrix, and the viscous interface friction between them. For the proposed model, we computed the tensile properties, the effects of velocity on the mechanical properties, and hysteresis values, which are in good agreement with available experimental data. The silk fiber model’s yield point, breaking strength, post-yield stiffness, and toughness increased with increasing pulling velocity, while extensibility and the diameter of the silk fiber decreased. Our bottom-up approach has shed light on silk fiber mechanics, which can be used as an essential tool to design artificial composite materials.

[1]  K. Numata,et al.  Darwin's bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression , 2021, Open Biology.

[2]  M. Tomita,et al.  Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk , 2021, Proceedings of the National Academy of Sciences.

[3]  Qingwen Li,et al.  Programmable Contractile Actuations of Twisted Spider Dragline Silk Yarns. , 2021, ACS biomaterials science & engineering.

[4]  Jeremy A. Miller,et al.  The common house spider, Parasteatoda tepidariorum, maintains silk gene expression on sub-optimal diet , 2020, bioRxiv.

[5]  R. Gillespie,et al.  Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation , 2020, bioRxiv.

[6]  K. Numata,et al.  Simultaneous effect of strain rate and humidity on the structure and mechanical behavior of spider silk , 2020, Communications Materials.

[7]  Masaru Tomita,et al.  Orb-weaving spider Araneus ventricosus genome elucidates the spidroin gene catalogue , 2019, Scientific Reports.

[8]  K. Numata,et al.  Spider dragline silk composite films doped with linear and telechelic polyalanine: Effect of polyalanine on the structure and mechanical properties , 2018, Scientific Reports.

[9]  F. Gräter,et al.  Stress-induced long-range ordering in spider silk , 2017, Scientific Reports.

[10]  P. Alam,et al.  Localised semicrystalline phases of MaSp1 proteins show high sensitivity to overshearing in β-sheet nanocrystals. , 2016, International journal of biological macromolecules.

[11]  F. Gräter,et al.  Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk , 2014, PloS one.

[12]  F. Gräter,et al.  Rate-dependent behavior of the amorphous phase of spider dragline silk. , 2014, Biophysical journal.

[13]  Bernd Markert,et al.  Silk fiber mechanics from multiscale force distribution analysis. , 2011, Biophysical journal.

[14]  Yang Li,et al.  Structural Origin of the Strain‐Hardening of Spider Silk , 2011 .

[15]  Alberto Redaelli,et al.  Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. , 2010, Nano letters.

[16]  R. Young,et al.  Deformation micromechanics of spider silk , 2008, Journal of Materials Science.

[17]  T. Salditt,et al.  Strain Dependent Structural Changes of Spider Dragline Silk , 2008 .

[18]  A Zippelius,et al.  Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. , 2007, Biophysical journal.

[19]  Thierry Lefèvre,et al.  Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. , 2007, Biophysical journal.

[20]  Lian Li,et al.  Design of superior spider silk: from nanostructure to mechanical properties. , 2006, Biophysical journal.

[21]  F Vollrath,et al.  Predicting the mechanical properties of spider silk as a model nanostructured polymer , 2005, The European physical journal. E, Soft matter.

[22]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[23]  B. Meier,et al.  The molecular structure of spider dragline silk: Folding and orientation of the protein backbone , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Hansma,et al.  Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F Vollrath,et al.  The effect of spinning conditions on the mechanics of a spider's dragline silk , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[27]  F. Vollrath,et al.  Mechanics and Morphology of Silk Drawn from Anesthetized Spiders , 2000, Naturwissenschaften.

[28]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[29]  F. Vollrath,et al.  Thread biomechanics in the two orb-weaving spiders Araneus diadematus(Araneae, Araneidae)and Uloborus walckenaerius(Araneae, Uloboridae) , 1995 .

[30]  Y. Termonia Molecular modeling of spider silk elasticity , 1994 .

[31]  David L. Kaplan,et al.  Mechanical and thermal properties of dragline silk from the spider Nephila clavipes , 1994 .

[32]  L. Jelinski,et al.  Solid-State 13C NMR of Nephila clavipes Dragline Silk Establishes Structure and Identity of Crystalline Regions , 1994 .

[33]  M. Denny,et al.  The structure and properties of spider silk , 1986 .

[34]  J. Cintron,et al.  A spider fibroin and its synthesis , 1981 .

[35]  M W Denny Silks--their properties and functions. , 1980, Symposia of the Society for Experimental Biology.

[36]  Mark W. Denny,et al.  THE PHYSICAL PROPERTIES OF SPIDER'S SILK AND THEIR ROLE IN THE DESIGN OF ORB-WEBS , 1976 .

[37]  Robert W. Work,et al.  The Force-Elongation Behavior of Web Fibers and Silks Forcibly Obtained from Orb-Web-Spinning Spiders , 1976 .