Introduction to MCMC

[1]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[2]  Charles J. Geyer,et al.  Importance Sampling, Simulated Tempering, and Umbrella Sampling , 2011 .

[3]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[4]  Alberto Caimo,et al.  Bayesian inference for exponential random graph models , 2010, Soc. Networks.

[5]  George Casella,et al.  A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data , 2008, 0808.2902.

[6]  Charles J. Geyer Computation for the Introduction to MCMC Chapter of Handbook of Markov Chain Monte Carlo , 2010 .

[7]  S. Sisson,et al.  Reversible jump Markov chain Monte Carlo , 2010, 1001.2055.

[8]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[9]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[10]  Jean-Michel Marin,et al.  A Bayesian reassessment of nearest-neighbour classification , 2008, 0802.1357.

[11]  Ajay Jasra,et al.  Population-Based Reversible Jump Markov Chain Monte Carlo , 2007, 0711.0186.

[12]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[13]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[14]  David A. Freedman,et al.  Statistics: Fourth edition , 2007 .

[15]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[16]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[17]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[18]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Brooks,et al.  Classical model selection via simulated annealing , 2003, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[20]  N. Chopin A sequential particle filter method for static models , 2002 .

[21]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[22]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[23]  N. Yi,et al.  Bayesian mapping of quantitative trait loci for complex binary traits. , 2000, Genetics.

[24]  Stephen P. Brooks,et al.  Markov Chain Monte Carlo Convergence Assessment via Two-Way Analysis of Variance , 2000 .

[25]  Stephen M. Stigler,et al.  Statistics on the Table: The History of Statistical Concepts and , 1999 .

[26]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[27]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[28]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[29]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[30]  D. Rubin Multiple Imputation After 18+ Years , 1996 .

[31]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[32]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[33]  C. Geyer,et al.  Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .

[34]  L. Mark Berliner,et al.  Subsampling the Gibbs Sampler , 1994 .

[35]  C. Geyer On the Convergence of Monte Carlo Maximum Likelihood Calculations , 1994 .

[36]  B. Schmeiser,et al.  Performance of the Gibbs, Hit-and-Run, and Metropolis Samplers , 1993 .

[37]  Robert L. Smith,et al.  Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..

[38]  Peter Green,et al.  Spatial statistics and Bayesian computation (with discussion) , 1993 .

[39]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[40]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[41]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[42]  Adrian F. M. Smith,et al.  Hierarchical Bayesian Analysis of Changepoint Problems , 1992 .

[43]  P. Glynn,et al.  The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations , 1992 .

[44]  P. Green,et al.  Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .

[45]  Ward Whitt,et al.  Estimating the asymptotic variance with batch means , 1991, Oper. Res. Lett..

[46]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[47]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[48]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[49]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[51]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[52]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[53]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[54]  W. Rudin Real and complex analysis , 1968 .

[55]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[56]  N. Metropolis,et al.  The Monte Carlo method. , 1949, Journal of the American Statistical Association.