Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximations

Abstract Results on stabilizing receding horizon control of sampled-data nonlinear systems via their approximate discrete-time models are presented. The proposed receding horizon control is based on the solution of Bolza-type optimal control problems for the parametrized family of approximate discrete-time models. This paper investigates both situations when the sampling period T is fixed and the integration parameter h used in obtaining approximate model can be chosen arbitrarily small, and when these two parameters coincide but they can be adjusted arbitrary. Sufficient conditions are established which guarantee that the controller that renders the origin to be asymptotically stable for the approximate model also stabilizes the exact discrete-time model for sufficiently small integration and/or sampling parameters.

[1]  D. Mayne,et al.  Receding horizon control of nonlinear systems without differentiability of the optimal value function , 1991 .

[2]  Howard M. Schwartz,et al.  Sampled-Data Robot Adaptive Control With Stabilizing Compensation , 1996, Int. J. Robotics Res..

[3]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[4]  Frank Allgöwer,et al.  Stabilization using sampled-data open-loop feedback - A nonlinear model predictive control perspective , 2004 .

[5]  M. B. Zarrop,et al.  Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .

[6]  Victor Klee,et al.  Qualitative stability of linear systems , 1987 .

[7]  Martin A Nowak,et al.  Mathematical models of HIV pathogenesis and treatment. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  Dragan Nesic,et al.  On uniform asymptotic stability of time-varying parameterized discrete-time cascades , 2004, IEEE Transactions on Automatic Control.

[9]  Eduardo Sontag,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[10]  Riccardo Scattolini,et al.  Model predictive control of continuous-time nonlinear systems with piecewise constant control , 2004, IEEE Transactions on Automatic Control.

[11]  Paul M. Frank,et al.  Advances in Control , 1999 .

[12]  S. Monaco,et al.  On regulation under sampling , 1997, IEEE Trans. Autom. Control..

[13]  Luigi Chisci,et al.  Dual-Receding Horizon Control of Constrained Discrete Time Systems , 1996, Eur. J. Control.

[14]  J. O'Reilly,et al.  Model predictive control of nonlinear systems: computational burden and stability , 2000 .

[15]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[16]  Frank Allgöwer,et al.  The quasi-infinite horizon approach to nonlinear model predictive control , 2003 .

[17]  Éva Gyurkovics,et al.  Stabilizing Receding Horizon Control of Sampled-Data Nonlinear Systems via Their Approximate Discrete-Time Models , 2003 .

[18]  D. Limon,et al.  Stable constrained MPC without terminal constraint , 2003, Proceedings of the 2003 American Control Conference, 2003..

[19]  Robin J. Evans,et al.  Controlling nonlinear time-varying systems via euler approximations , 1992, Autom..

[20]  D. Nesic,et al.  Backstepping on the Euler approximate model for stabilization of sampled-data nonlinear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[21]  G. Kreisselmeier,et al.  Numerical nonlinear regulator design , 1994, IEEE Trans. Autom. Control..

[22]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[23]  Arno Linnemann,et al.  Toward infinite-horizon optimality in nonlinear model predictive control , 2002, IEEE Trans. Autom. Control..

[24]  Krisztina Kiss,et al.  Stabilization of HIV/AIDS model by receding horizon control , 2005 .

[25]  F. Fontes A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .

[26]  Frank Allgöwer,et al.  Towards a Sampled-Data Theory for Nonlinear Model Predictive Control , 2003 .

[27]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[28]  Thomas Parisini,et al.  Nonlinear stabilization by receding-horizon neural regulators , 1998 .

[29]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[30]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[31]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[32]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[33]  Denis Dochain,et al.  Adaptive identification and control algorithms for nonlinear bacterial growth systems , 1984, Autom..

[34]  Dragan Nesic,et al.  Changing supply rates for input-output to state stable discrete-time nonlinear systems with applications , 2003, Autom..

[35]  P. Kokotovic,et al.  A note on input-to-state stability of sampled-data nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[36]  Dragan Nesic,et al.  A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation , 2004, Autom..

[37]  M. Farkas,et al.  Dynamical models in biology , 2001 .

[38]  A. R. Teelb,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[39]  A. Isidori Nonlinear Control Systems , 1985 .

[40]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[41]  Shigui Ruan,et al.  Mathematical Biology Digital Object Identifier (DOI): , 2000 .

[42]  W. Kwon,et al.  On feedback stabilization of time-varying discrete linear systems , 1978 .

[43]  G. Nicolao,et al.  Stabilizing receding-horizon control of nonlinear time-varying systems , 1998, IEEE Trans. Autom. Control..

[44]  Kazufumi Ito,et al.  Asymptotic Properties of Receding Horizon Optimal Control Problems , 2002, SIAM J. Control. Optim..

[45]  J. Billingsley Digital Control using Microprocessors , 1983 .

[46]  L. Magni,et al.  Stability margins of nonlinear receding-horizon control via inverse optimality , 1997 .

[47]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[48]  Dingjun Luo,et al.  Qualitative Theory of Dynamical Systems , 1993 .

[49]  É. Gyurkovics Receding horizon control via Bolza-type optimization , 1998 .

[50]  Riccardo Scattolini,et al.  State-feedback MPC with piecewise constant control for continuous-time nonlinear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[51]  F. Allgower,et al.  Computation and performance assessment of nonlinear model predictive control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[52]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[53]  Hulin Wu,et al.  Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity. , 2003, Mathematical biosciences.

[54]  Wook Hyun Kwon,et al.  Advances in Nonlinear Predictive Control : A Survey on Stability and Optimality , 2004 .

[55]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[56]  David Q. Mayne,et al.  Model Predictive Control of Nonlinear Systems , 1991, 1991 American Control Conference.

[57]  Riccardo Scattolini,et al.  A stabilizing model-based predictive control algorithm for nonlinear systems , 2001, Autom..

[58]  A. Elaiw Stabilization of sampled-data nonlinear systems by an $l$-step receding horizon control based on their approximate discrete-time models , 2003 .

[59]  Éva Gyurkovics,et al.  Receding horizon H~u control for nonlinear discrete-time systems , 2002 .

[60]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[61]  Dragan Nesic,et al.  A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models , 2004, IEEE Transactions on Automatic Control.

[62]  J.A.M. Felippe de Souza,et al.  Optimal control theory applied to the anti-viral treatment of AIDS , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[63]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[64]  M. Nowak,et al.  Population Dynamics of Immune Responses to Persistent Viruses , 1996, Science.

[65]  Dragan Nesic,et al.  Integral versions of iss for sampled-data nonlinear systems via their approximate discrete-time models , 2002, IEEE Trans. Autom. Control..

[66]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[67]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[68]  Dragan Nesic,et al.  Open- and Closed-Loop Dissipation Inequalities Under Sampling and Controller Emulation , 2002, Eur. J. Control.

[69]  Andrew R. Teel,et al.  Enhancing immune response to HIV infection using MPC-based treatment scheduling , 2003, Proceedings of the 2003 American Control Conference, 2003..

[70]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[71]  M. Nowak,et al.  Virus dynamics: Mathematical principles of immunology and virology , 2001 .

[72]  Chung Choo Chung,et al.  Optimal Scheduling of Drug Treatment for HIV Infection : Continuous Dose Control and Receding Horizon Control , 2003 .

[73]  E. Receding horizon H , control for nonlinear discrete-time systems , 2004 .

[74]  David H. Owens,et al.  Fast Sampling and Stability of Nonlinear Sampled-Data Systems: Part 1. Existence Theorems , 1990 .

[75]  Dragan Nesic,et al.  Optimization-Based Stabilization of Sampled-Data Nonlinear Systems via Their Approximate Discrete-Time Models , 2003, SIAM J. Control. Optim..

[76]  Dragan Nesic,et al.  Matrosov theorem for parameterized families of discrete-time systems , 2004, Autom..

[77]  C. C. Chen,et al.  On receding horizon feedback control , 1981, Autom..

[78]  Dina Shona Laila,et al.  Design and analysis of nonlinear sampled data control systems , 2003 .

[79]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[80]  A. M. Elaiw,et al.  RECEDING HORIZON CONTROL METHOD APPLIED TO ANTIVIRAL TREATMENT OF AIDS , 2004 .

[81]  Éva Gyurkovics,et al.  Stabllization of HIV/AIDS model using an l-step receding horizon control based treatment scheduling , 2004 .

[82]  Éva Gyurkovics,et al.  Stabilization of Sampled-Data Nonlinear Systems by Receding Horizon Control via Discrete-Time Approximations , 2003 .

[83]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[84]  D. Mayne,et al.  Receding horizon control of nonlinear systems , 1990 .

[85]  M. Alamir,et al.  On the stability of receding horizon control of nonlinear discrete-time systems , 1994 .

[86]  E. Polak,et al.  Moving horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty , 1993 .

[87]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[88]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[89]  T. Yoneyama,et al.  Short and long period optimization of drug doses in the treatment of AIDS. , 2002, Anais da Academia Brasileira de Ciencias.

[90]  Frank Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997, 1997 European Control Conference (ECC).

[91]  Ilia G. Polushin,et al.  Multirate versions of sampled-data stabilization of nonlinear systems , 2004, Autom..