Detection of DNA copy number alterations in cancer by array comparative genomic hybridization

Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.

[1]  Robert Kincaid,et al.  Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Pinkel,et al.  Genomic Alterations in Primary Gastric Adenocarcinomas Correlate with Clinicopathological Characteristics and Survival , 2004, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[3]  A. Evans,et al.  The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression , 2006, BMC Genomics.

[4]  M. Ringnér,et al.  Impact of DNA amplification on gene expression patterns in breast cancer. , 2002, Cancer research.

[5]  S. Ogawa,et al.  Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumor tissue using microarrays. , 2007, Cancer research.

[6]  F. Pontén,et al.  Laser-assisted cell microdissection using the PALM system. , 2005, Methods in molecular biology.

[7]  P. Nederlof,et al.  A multiplex PCR predictor for aCGH success of FFPE samples , 2005, British Journal of Cancer.

[8]  W. Kuo,et al.  Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene , 2000, Nature Genetics.

[9]  A. Feinberg,et al.  An X Chromosome Gene, WTX, Is Commonly Inactivated in Wilms Tumor , 2007, Science.

[10]  Yinhe Cao,et al.  Exploiting noise in array CGH data to improve detection of DNA copy number change , 2007, Nucleic acids research.

[11]  J. Melo,et al.  Chronic myeloid leukemia--advances in biology and new approaches to treatment. , 2003, The New England journal of medicine.

[12]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[13]  D. Ledbetter,et al.  Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[14]  O. Monni,et al.  New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. , 2001, Cancer research.

[15]  R. Stallings,et al.  Correction: Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes , 2007, Genome Biology.

[16]  Patrick G Buckley,et al.  Genomic microarrays in the spotlight. , 2004, Drug discovery today.

[17]  Pedro Martínez,et al.  Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling , 2006, Molecular Cancer.

[18]  D. Pinkel,et al.  Array comparative genomic hybridization and its applications in cancer , 2005, Nature Genetics.

[19]  John M Maris,et al.  High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. , 2006, Cancer research.

[20]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[21]  Frank Speleman,et al.  Translocation–excision–deletion–amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1 , 2006, Genes, chromosomes & cancer.

[22]  R. Willemze,et al.  Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. , 2007, Blood.

[23]  G. Mills,et al.  The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers , 2004, Nature Medicine.

[24]  Christine A Iacobuzio-Donahue,et al.  Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays. , 2006, Cancer research.

[25]  G. Christofori Cancer: Division of labour , 2007, Nature.

[26]  H. Sather,et al.  Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. , 1985, The New England journal of medicine.

[27]  Stefan Fröhling,et al.  Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Frank Speleman,et al.  ArrayCGH‐based classification of neuroblastoma into genomic subgroups , 2007, Genes, chromosomes & cancer.

[29]  Sandya Liyanarachchi,et al.  Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Varmus,et al.  Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. , 1984, Science.

[31]  M. Lerman,et al.  Critical tumor‐suppressor gene regions on chromosome 3P in major human epithelial malignancies: Allelotyping and quantitative real‐time PCR , 2002, International journal of cancer.

[32]  Michael R. Speicher,et al.  High resolution array-CGH analysis of single cells , 2006, Nucleic acids research.

[33]  D. Kelsell,et al.  Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis , 2007, Genes, chromosomes & cancer.

[34]  Barbara J. Trask,et al.  Array Comparative Genomic Hybridization Analysis of Genomic Alterations in Breast Cancer Subtypes , 2004, Cancer Research.

[35]  B. Ylstra,et al.  High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides , 2004, Journal of Clinical Pathology.

[36]  Peter J. Park,et al.  Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data , 2005, Bioinform..

[37]  Michael Baudis,et al.  Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  S. Hirohashi,et al.  Frequent silencing of DBC1 is by genetic or epigenetic mechanisms in non-small cell lung cancers. , 2005, Human molecular genetics.

[39]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[40]  A. Hoischen,et al.  Frequent loss of chromosome 9, homozygous CDKN2A/p14ARF/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas , 2007, Oncogene.

[41]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy number variation in breast cancer using DNA microarrays , 1999, Nature Genetics.

[42]  P. Lizardi,et al.  Mutation detection and single-molecule counting using isothermal rolling-circle amplification , 1998, Nature Genetics.

[43]  R. Weinberg,et al.  Tumor suppressor genes. , 1991, Science.

[44]  Stefan Imreh,et al.  Combined LOH/CGH analysis proves the existence of interstitial 3p deletions in renal cell carcinoma , 2000, Oncogene.

[45]  N. Carter,et al.  Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array-CGH , 2006, Oncogene.

[46]  D. Pinkel,et al.  Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. , 2005, Blood.

[47]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[48]  T. A. Lister,et al.  Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. , 2005, Cancer research.

[49]  F. Speleman,et al.  A detailed inventory of DNA copy number alterations in four commonly used Hodgkin's lymphoma cell lines. , 2007, Haematologica.

[50]  S. P. Fodor,et al.  Large-scale genotyping of complex DNA , 2003, Nature Biotechnology.

[51]  Michael L. Bittner,et al.  Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Ajay N. Jain,et al.  Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. , 2006, Cancer cell.

[53]  L. Chin,et al.  Comparative Oncogenomics Identifies NEDD9 as a Melanoma Metastasis Gene , 2006, Cell.

[54]  K. Aldape,et al.  Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. , 2005, Cancer research.

[55]  A. Syvänen,et al.  Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. , 2003, Nucleic acids research.

[56]  Renée X de Menezes,et al.  Genomic profiling by DNA amplification of laser capture microdissected tissues and array CGH. , 2004, Nucleic acids research.

[57]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[58]  K. Kinzler,et al.  Cancer genes and the pathways they control , 2004, Nature Medicine.

[59]  Jane Fridlyand,et al.  Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors , 2004 .

[60]  H. Tagawa,et al.  Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM , 2005, Oncogene.

[61]  R Tibshirani,et al.  Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification , 2006, Oncogene.

[62]  G. Sauter,et al.  Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer , 2007, Nature Genetics.

[63]  S. Hirohashi,et al.  ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation , 2005, Oncogene.

[64]  Raj Chari,et al.  Recent advances in array comparative genomic hybridization technologies and their applications in human genetics , 2006, European Journal of Human Genetics.

[65]  Yves Moreau,et al.  Single-cell chromosomal imbalances detection by array CGH , 2006, Nucleic acids research.

[66]  Hans A. Kestler,et al.  Genomic DNA-Chip Hybridization Reveals a Higher Incidence of Genomic Amplifications in Pancreatic Cancer than Conventional Comparative Genomic Hybridization and Leads to the Identification of Novel Candidate Genes , 2004, Cancer Research.

[67]  T. Miki,et al.  Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array , 2007, Oncogene.

[68]  Carlos Caldas,et al.  Identification and validation of prognostic markers in breast cancer with the complementary use of array‐CGH and tissue microarrays , 2005, The Journal of pathology.

[69]  H. Döhner,et al.  Matrix‐based comparative genomic hybridization: Biochips to screen for genomic imbalances , 1997, Genes, chromosomes & cancer.

[70]  Michael R. Speicher,et al.  The new cytogenetics: blurring the boundaries with molecular biology , 2005, Nature Reviews Genetics.

[71]  Ajay N. Jain,et al.  Assembly of microarrays for genome-wide measurement of DNA copy number , 2001, Nature Genetics.

[72]  F. Dean,et al.  Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. , 2001, Genome research.

[73]  F. Speleman,et al.  Genome wide measurement of DNA copy number changes in neuroblastoma: dissecting amplicons and mapping losses, gains and breakpoints , 2006, Cytogenetic and Genome Research.

[74]  M. Meyerson,et al.  Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. , 2005, Cancer research.

[75]  B. Ylstra,et al.  BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH) , 2006, Nucleic acids research.

[76]  R. Ren,et al.  Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia , 2005, Nature Reviews Cancer.

[77]  G. Berx,et al.  Combined subtractive cDNA cloning and array CGH: an efficient approach for identification of overexpressed genes in DNA amplicons , 2004, BMC Genomics.

[78]  T. Lister,et al.  Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. , 2005, Cancer research.

[79]  Donna Albertson,et al.  Genomic and Expression Analysis of the 8p11–12 Amplicon in Human Breast Cancer Cell Lines , 2004, Cancer Research.

[80]  F. Speleman,et al.  High resolution tiling‐path BAC array deletion mapping suggests commonly involved 3p21‐p22 tumor suppressor genes in neuroblastoma and more frequent tumors , 2007, International journal of cancer.

[81]  Jing Huang,et al.  Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. , 2004, Genome research.

[82]  J. Fridlyand,et al.  Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma , 2005, Oncogene.

[83]  Ian Collins,et al.  New approaches to molecular cancer therapeutics , 2006, Nature chemical biology.

[84]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[85]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[86]  Juan F. García,et al.  Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. , 2007, Blood.

[87]  Genomic imbalances in human leukemia and lymphoma detected by comparative genomic hybridization (Review). , 2005, International journal of oncology.

[88]  Wing Hung Wong,et al.  Array comparative genome hybridization for tumor classification and gene discovery in mouse models of malignant melanoma. , 2003, Cancer research.

[89]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[90]  J. Trent,et al.  Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc , 1984, Nature.

[91]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[92]  Bassem A Bejjani,et al.  Application of array-based comparative genomic hybridization to clinical diagnostics. , 2006, The Journal of molecular diagnostics : JMD.

[93]  Ajay N. Jain,et al.  Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. , 2003, Cancer research.

[94]  Tara L. Naylor,et al.  Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. , 2005, Cancer research.

[95]  Joel Greshock,et al.  High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization , 2005, Breast Cancer Research.

[96]  J. Minna,et al.  Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene , 1998, Oncogene.

[97]  N. Hayward,et al.  Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. , 2007, Cancer research.

[98]  L. Chin,et al.  Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. , 2006, Cancer research.

[99]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[100]  Bert Vogelstein,et al.  Mutations of mitotic checkpoint genes in human cancers , 1998, Nature.

[101]  Bradley P. Coe,et al.  Resolving the resolution of array CGH. , 2007, Genomics.

[102]  J Piper,et al.  Comparative analysis of comparative genomic hybridization microarray technologies: report of a workshop sponsored by the Wellcome Trust. , 2002, Cytometry.

[103]  Alain Bernheim,et al.  Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH. , 2005, Nucleic acids research.

[104]  R. Spang,et al.  A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. , 2006, The New England journal of medicine.

[105]  Wen-Lin Kuo,et al.  A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. , 2006, Cancer cell.

[106]  M. Caligiuri,et al.  Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. , 1994, Cancer research.

[107]  L. Chin,et al.  High-resolution genomic profiles of human lung cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  I. Ellis,et al.  A 1 Mb minimal amplicon at 8p11–12 in breast cancer identifies new candidate oncogenes , 2005, Oncogene.

[109]  J. Pollack,et al.  Comparative genomic hybridization on mouse cDNA microarrays and its application to a murine lymphoma model , 2005, Oncogene.

[110]  M. Wigler,et al.  Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach , 2006, Cell.

[111]  Jing Huang,et al.  Algorithms for large-scale genotyping microarrays , 2003, Bioinform..

[112]  D. Pearson,et al.  Application of array CGH on archival formalin-fixed paraffin-embedded tissues including small numbers of microdissected cells , 2006, Laboratory Investigation.

[113]  M. Shapero,et al.  High-resolution analysis of DNA copy number using oligonucleotide microarrays. , 2004, Genome research.

[114]  L. Liotta,et al.  Laser capture microdissection. , 2006, Methods in molecular biology.

[115]  Daniel Pinkel,et al.  Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. , 2003, Genome research.

[116]  Peter W. Andrews,et al.  Novel Genomic Aberrations in Testicular Germ Cell Tumors by Array-CGH, and Associated Gene Expression Changes , 2006, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[117]  Michael A. Dyer,et al.  Inactivation of the p53 pathway in retinoblastoma , 2006, Nature.

[118]  M. Bittner,et al.  Chromosomal aberrations and gene expression profiles in non-small cell lung cancer. , 2007, Lung cancer.

[119]  Jane Fridlyand,et al.  Bladder Cancer Stage and Outcome by Array-Based Comparative Genomic Hybridization , 2005, Clinical Cancer Research.

[120]  J Piper,et al.  Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Kylie L. Gorringe,et al.  Degenerate oligonucleotide primed-polymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers : a new approach for the molecular analysis of paraffin-embedded cancer tissue. , 2001, The American journal of pathology.

[122]  J. Pollack,et al.  Amplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA. , 2005, The Journal of molecular diagnostics : JMD.

[123]  N. Carter,et al.  Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. , 1992, Genomics.

[124]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[125]  A. Cleton-Jansen,et al.  The role of EXT1 in nonhereditary osteochondroma: identification of homozygous deletions. , 2007, Journal of the National Cancer Institute.

[126]  A. Tischler,et al.  Microarray-based comparative genomic hybridization of pheochromocytoma cell lines from neurofibromatosis knockout mice reveals genetic alterations similar to those in human pheochromocytomas. , 2005, Cancer genetics and cytogenetics.

[127]  Charles Lee,et al.  The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. , 2006, Blood.

[128]  Stine H. Kresse,et al.  Array comparative genomic hybridization reveals distinct DNA copy number differences between gastrointestinal stromal tumors and leiomyosarcomas. , 2006, Cancer research.

[129]  G. Tseng,et al.  Comparison of gene expression and DNA copy number changes in a murine model of lung cancer , 2006, Genes, chromosomes & cancer.

[130]  J W Gray,et al.  Genetic analysis using genomic representations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[131]  R. Lotan,et al.  N-(4-Hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells , 2006, Oncogene.

[132]  Gunnar Wrobel,et al.  Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[133]  E. Gebhart Comparative genomic hybridization (CGH): ten years of substantial progress in human solid tumor molecular cytogenetics , 2004, Cytogenetic and Genome Research.

[134]  S. Mousses,et al.  Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. , 2007, Cancer research.

[135]  Luc Girard,et al.  An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. , 2004, Cancer research.

[136]  Christian A. Rees,et al.  Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Daniela S Krause,et al.  Tyrosine kinases as targets for cancer therapy. , 2005, The New England journal of medicine.

[138]  D. Albertson,et al.  Gene amplification in cancer. , 2006, Trends in genetics : TIG.

[139]  R. Hubert,et al.  Whole genome amplification from a single cell: implications for genetic analysis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[140]  A. Kallioniemi,et al.  High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer , 2007, British Journal of Cancer.

[141]  O. Kallioniemi,et al.  Integrated breast cancer genomics. , 2006, Cancer cell.

[142]  Cheng Li,et al.  Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. , 2003, Cancer research.

[143]  Todd R. Golub,et al.  Genomics: Global views of leukaemia , 2007, Nature.

[144]  B. Druker,et al.  Oncogenes and Tumor Suppressors (795 articles) , 2004 .