Post-Congress P 09 32 nd INTERNATIONAL GEOLOGICAL CONGRESS IGNIMBRITIC DEPOSITS IN CENTRAL ITALY : PYROCLASTIC PRODUCTS OF THE QUATERNARY AGE AND ETRUSCAN FOOTPATHS

[1]  T. Ui,et al.  Factors governing the flow lineation of a large-scale pyroclastic flow — An example in the ata pyroclastic flow deposit, Japan , 1983 .

[2]  D. Hopkins,et al.  The Potassium-Argon Dating of Late Cenozoic Rocks in East Africa and Italy [and Comments and Reply] , 1965, Current Anthropology.

[3]  J. Varekamp Geology and petrology of the Vulsinian volcanic area (Latium, Italy) , 1979 .

[4]  Michael J. Branney,et al.  Sustained high‐density turbidity currents and the deposition of thick massive sands , 1995 .

[5]  J. Varekamp The geology of the Vulsinian area, Lazio, Italy , 1980 .

[6]  G. Heiken,et al.  Mobility of a large-volume pyroclastic flow — emplacement of the Campanian ignimbrite, Italy , 1993 .

[7]  M. Chiodi,et al.  L'ignimbrite di Orvieto nel quadro dell' evoluzione vulcano-tettonica dei Vulsini orientali; Caratteristiche geologiche e tecniche , 1982 .

[8]  S. Carey Transport and Deposition of Tephra by Pyroclastic Flows and Surges , 1991 .

[9]  B. Capaccioni,et al.  Computer-assisted image analysis on clast shape fabric from the Orvieto-Bagnoregio ignimbrite (Vulsini District, central Italy): implications on the emplacement mechanisms , 1996 .

[10]  T. Ui,et al.  Grain orientation and depositional ramps as flow direction indicators of a large-scale pyroclastic flow deposit in Japan , 1982 .

[11]  B. Capaccioni,et al.  Plinian fall deposits from Vulsini Volcanic District (Central Italy) , 1994 .

[12]  Eugene I. Smith,et al.  Determination of Flow Direction of Rhyolitic Ash-Flow Tuffs from Fluidal Textures , 1970 .

[13]  K. Mimura,et al.  Flow directions inferred from imbrication in the Handa pyroclastic flow deposit in Japan , 1983 .

[14]  John V. Wright,et al.  Eruption, transport and deposition of ignimbrite: A case study from Mexico , 1981 .

[15]  G. Valentine,et al.  Coarse-tail vertical and lateral grading in pyroclastic flow deposits of the Latera Volcanic Complex (Vulsini, central Italy): origin and implications for flow dynamics , 1995 .

[16]  T. Ui,et al.  Flow behavior of large-scale pyroclastic flows — Evidence obtained from petrofabric analysis , 1989 .

[17]  W. E. Elston,et al.  Magnetic fabrics of the Bloodgood Canyon and Shelley Peak Tuffs, southwestern New Mexico: implications for emplacement and alteration processes , 1991 .

[18]  D. Palladino,et al.  Three types of pyroclastic currents and their deposits: examples from the Vulsini Volcanoes, Italy , 2002 .

[19]  Alberto Renzulli,et al.  Geological evolution and geochronology of the Vulsini volcanic district (central Italy) , 1995 .

[20]  R. V. Fisher Transport and deposition of a pyroclastic surge across an area of high relief: The 18 May 1980 eruption of Mount St. Helens, Washington , 1990 .

[21]  F. Antonelli,et al.  Volcanological and petrological evolution of the Eastern Vulsini District, Central Italy , 1998 .

[22]  A. Peccerillo Plio-Quaternary magmatism in Central-Southern Italy: a new classification scheme for volcanic provinces and its geodynamic implications , 2002 .

[23]  H. Palmer,et al.  Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA , 1990 .

[24]  R. Sparks Stratigraphy and geology of the ignimbrites of Vulsini Volcano, central Italy , 1975 .

[25]  A. Freundt,et al.  Pyroclastic flow transport mechanisms , 1998 .

[26]  T. Druitt,et al.  Particle fabric in a small, type-2 ignimbrite flow unit (Laacher See, Germany) and implications for emplacement dynamics , 1998, Bulletin of Volcanology.

[27]  J. D. Appleton Petrogenesis of Potassium-rich Lavas from the Roccamonfina Volcano, Roman Region, Italy , 1972 .

[28]  R. Wells,et al.  Magnetic Fabric, Flow Directions, and Source Area of the Lower Miocene Peach Springs Tuff in Arizona, California, and Nevada , 1991 .

[29]  F. Innocenti,et al.  Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy , 1993 .

[30]  A. Renzulli,et al.  Evidence of incremental growth in the Vulsinian calderas (central Italy) , 1991 .

[31]  T. Druitt Pyroclastic density currents , 1998, Geological Society, London, Special Publications.

[32]  G. Valentine,et al.  Origin of layer 1 deposits in ignimbrites , 1986 .

[33]  D. Potter,et al.  Vent sites and flow directions of the Otowi ash flows (lower Bandelier Tuff), New Mexico , 1987 .

[34]  J. Taddeucci,et al.  The basal ash deposit of the Sovana Eruption (Vulsini Volcanoes, central Italy): the product of a dilute pyroclastic density current , 1998 .

[35]  R. V. Fisher Mechanism of deposition from pyroclastic flows , 1966 .

[36]  P. Manetti,et al.  The potassium alkaline volcanism of central-southern Italy; a review of the data relevant to petrogenesis and geodynamic significance , 1985 .

[37]  M. Sciotti,et al.  Problemi di stabilita della rupe di Orvieto , 1980 .

[38]  J. Lindsay The development of clast fabric in mudflows , 1968 .

[39]  R. Sparks,et al.  Grain size variations in ignimbrites and implications for the transport of pyroclastic flows , 1976 .