Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation.

Second harmonic generation from plasmonic nanoantennas is investigated numerically using a surface integral formulation for the calculation of both the fundamental and the second harmonic electric field. The comparison between a realistic and an idealized gold nanoantenna shows that second harmonic generation is extremely sensitive to asymmetry in the nanostructure shape even in cases where the linear response is barely modified. Interestingly, minute geometry asymmetry and surface roughness are clearly revealed by far-field analysis, demonstrating that second harmonic generation is a promising tool for the sensitive optical characterization of plasmonic nanostructures. Furthermore, defects located where the linear field is strong (e.g., in the antenna gap) do not necessarily have the strongest impact on the second harmonic signal.

[1]  Fernando D Stefani,et al.  Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. , 2011, Nano letters.

[2]  Hervé Rigneault,et al.  Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .

[3]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[4]  Simon Rivier,et al.  Enhanced second-harmonic generation from double resonant plasmonic antennae. , 2012, Optics express.

[5]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[6]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[7]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[8]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[9]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[10]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[11]  O. Martin,et al.  Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Olivier J F Martin,et al.  Molecule-dependent plasmonic enhancement of fluorescence and Raman scattering near realistic nanostructures. , 2012, ACS nano.

[13]  Markku Kuittinen,et al.  Metamaterials with tailored nonlinear optical response. , 2012, Nano letters.

[14]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[15]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[16]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[17]  R. Haglund,et al.  Second-harmonic generation from arrays of symmetric gold nanoparticles , 2006 .

[18]  Martti Kauranen,et al.  Boundary element method for surface nonlinear optics of nanoparticles. , 2011, Optics express.

[19]  A. Bouhelier,et al.  Silencing and enhancement of second-harmonic generation in optical gap antennas. , 2012, Optics express.

[20]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[21]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[22]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[23]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[24]  Wenqi Zhu,et al.  Direct observation of beamed Raman scattering. , 2012, Nano letters.

[25]  N. V. van Hulst,et al.  Aluminum for nonlinear plasmonics: Resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[26]  John E. Sipe,et al.  Surface and bulk contributions to the second-order nonlinear optical response of a gold film , 2009 .

[27]  Mohsen Rahmani,et al.  Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. , 2012, Nano letters.

[28]  Peter Nordlander,et al.  Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. , 2007, Nano letters.

[29]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[30]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[31]  Olivier J F Martin,et al.  Pitfalls in the Determination of Optical Cross Sections From Surface Integral Equation Simulations , 2010, IEEE Transactions on Antennas and Propagation.

[32]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[33]  L. Novotný,et al.  Antennas for light , 2011 .

[34]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[35]  Naomi J Halas,et al.  Three-dimensional nanostructures as highly efficient generators of second harmonic light. , 2011, Nano letters.

[36]  Pierre-François Brevet,et al.  Multipolar second-harmonic generation in noble metal nanoparticles , 2008 .

[37]  R. Bratschitsch,et al.  Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. , 2009, Physical review letters.

[38]  Olivier J. F. Martin,et al.  Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas , 2009 .

[39]  T. Schumacher,et al.  Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle , 2011, Nature Communications.

[40]  Harald Giessen,et al.  Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. , 2012, Nano letters.

[41]  Mario Bertolotti,et al.  Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation. , 2011, Optics express.

[42]  Jari Turunen,et al.  Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. , 2007, Nano letters.

[43]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[44]  Tony F. Heinz,et al.  Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material , 1999 .

[45]  Javier Aizpurua,et al.  All-optical control of a single plasmonic nanoantenna-ITO hybrid. , 2011, Nano letters.

[46]  P. Biagioni,et al.  Dynamics of four-photon photoluminescence in gold nanoantennas. , 2011, Nano letters.

[47]  Pierre-François Brevet,et al.  Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. , 2010, Nano letters.

[48]  J. Butet,et al.  Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. , 2012, Nano letters.

[49]  Christian Jonin,et al.  Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions , 2010 .

[50]  J. Butet,et al.  Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. , 2010, Physical review letters.

[51]  Lukas Novotny,et al.  Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. , 2012, Physical review letters.

[52]  Ulrich Hohenester,et al.  Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[53]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[54]  J. Roch,et al.  Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres. , 2011, Optics express.

[55]  Olivier J F Martin,et al.  Excitation and reemission of molecules near realistic plasmonic nanostructures. , 2011, Nano letters.

[56]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[57]  Andrea Alù,et al.  Individual nanoantennas loaded with three-dimensional optical nanocircuits. , 2013, Nano letters.

[58]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[59]  M. Kauranen,et al.  Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. , 2012, Nano letters.

[60]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[61]  Miguel Navarro-Cia,et al.  Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. , 2012, ACS nano.

[62]  V V Moshchalkov,et al.  Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. , 2010, Physical review letters.