Frank H. George Research Award winning paper Cancer self‐remission and tumour instability – a cybernetic analysis Towards a fresh paradigm for cancer treatment

Aims to investigate the causative factors and clinical applicability of spontaneous regression of malignant tumours without treatment, a really paradoxical phenomenon with many therapeutic potentialities. Analyses past cases to find that the commonest cause is a preceding episode of high fever‐induced thermal fluctuation which produces fluctuation of biochemical/immunological parameters. Using Prigogine‐Glansdorff‐Langevin stability theory and biocybernetic principles, develops the theoretical foundation of a tumour’s self‐control, homeostasis and regression induced by thermal, radiation or oxygenation fluctuations. Derives a threshold condition of perturbations for producing regression. Presents some striking confirmation of such fluctuation‐induced regression in Ewing tumour, Clear cell cancer and Lewis lung carcinoma. Using experimental data on patients, elucidates a novel therapeutic approach of multi‐modal hyper‐fluctuation utilizing radiotherapeutic hyper‐fractionation, temperature and immune‐status.

[1]  J. Shirlaw THE METABOLISM OF TUMOURS , 1931 .

[2]  C. Keysser Neoplastic Development, Vol. 2 , 1976 .

[3]  C. Perez,et al.  Principles and Practice of Radiation Oncology , 1987 .

[4]  Grégoire Nicolis,et al.  Thermodynamic theory of stability, structure and fluctuations , 1970 .

[5]  R. Kerbel A cancer therapy resistant to resistance , 1997, Nature.

[6]  R.R. Mohler,et al.  A systems approach to immunology , 1980, Proceedings of the IEEE.

[7]  W. Seffens Order From Chaos , 1999, Science.

[8]  L. Walford,et al.  Bioenergetics and Growth , 1947 .

[9]  W Horsthemke,et al.  Bistability in fluctuating environments. Implications in tumor immunology. , 1979, Bulletin of mathematical biology.

[10]  I N Shvemberger,et al.  Conversion of malignant cells into normal ones. , 1986, International review of cytology.

[11]  A I Zotin,et al.  Thermodynamic aspects of developmental biology. , 1967, Journal of theoretical biology.

[12]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[13]  Everson Tc,et al.  Spontaneous regression of cancer. , 1967, Progress in clinical cancer.

[14]  F T Vertosick,et al.  Immune network theory: a role for parallel distributed processing? , 1989, Immunology.

[15]  D. Dutta Majumder CYBERNETICS AND GENERAL SYSTEMS—A UNITARY SCIENCE? , 1979 .

[16]  Thomas Boehm,et al.  Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance , 1997, Nature.

[17]  F. Dickens Metabolism of Tumours , 1940, Nature.

[18]  I. Vladimirova The Energetics of Regeneration Processes , 1978 .

[19]  D. D. Majumder,et al.  States Of Consciousness in Sleep, Dream and Beyond: A Biothermodynamic and Neurocybernetic Evolutionary Study , 2000 .

[20]  Masaharu Kitamura,et al.  CML approach to power reactor dynamics (I) - preservation of normality , 1996 .

[21]  R. Lefever,et al.  A kinetic approach to the immunology of cancer: stationary states properties of effector-target cell reactions. , 1978, Journal of theoretical biology.

[22]  U. an der Heiden,et al.  A basic mathematical model of the immune response. , 1995, Chaos.