Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach.

A stochastic generalization of renormalization-group transformation for continuous-time random walk processes is proposed. The renormalization consists in replacing the jump events from a randomly sized cluster by a single renormalized (i.e., overall) jump. The clustering of the jumps, followed by the corresponding transformation of the interjump time intervals, yields a new class of coupled continuous-time random walks which, applied to modeling of relaxation, lead to the general power-law properties usually fitted with the empirical Havriliak-Negami function.

[1]  M. Magdziarz,et al.  Numerical approach to the fractional Klein-Kramers equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Marcin Magdziarz,et al.  Competition between subdiffusion and Lévy flights: a Monte Carlo approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Karina Weron,et al.  Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[5]  Karina Weron,et al.  Anomalous diffusion schemes underlying the Cole–Cole relaxation: The role of the inverse-time α-stable subordinator , 2006 .

[6]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[7]  K. Weron,et al.  Hopping models of charge transfer in a complex environment: coupled memory continuous-time random walk approach. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[9]  Aleksander Stanislavsky,et al.  Probability Interpretation of the Integral of Fractional Order , 2004 .

[10]  I M Sokolov,et al.  Solutions of a class of non-Markovian Fokker-Planck equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Karina Weron,et al.  Random walk models of electron tunneling in a fluctuating medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Vassili N. Kolokoltsov,et al.  Fractional Stable Distributions , 2001 .

[13]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[14]  I. Sokolov,et al.  Lévy flights from a continuous-time process. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Ralf Metzler,et al.  Deriving fractional Fokker-Planck equations from a generalised master equation , 1999 .

[16]  K. Weron,et al.  On the Cole-Cole relaxation function and related Mittag-Leffler distribution , 1996 .

[17]  T. Kozubowski,et al.  On moments and tail behavior of v-stable random variables , 1996 .

[18]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[19]  Marcin Kotulski,et al.  Asymptotic distributions of continuous-time random walks: A probabilistic approach , 1995 .

[20]  Vlad,et al.  Stochastic renormalization-group approach to space-dependent supercritical branched chain processes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Svetlozar T. Rachev,et al.  The theory of geometric stable distributions and its use in modeling financial data , 1994 .

[22]  Vlad Hierarchical clustering-jump approach to analogs of renormalization-group transformations in fractal random processes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  A. Gut Stopped Random Walks , 1987 .

[24]  M. Shlesinger,et al.  Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.

[25]  Michael F. Shlesinger,et al.  Williams-watts dielectric relaxation: A fractal time stochastic process , 1984 .

[26]  Michael F. Shlesinger,et al.  Analogs of renormalization group transformations in random processes , 1981 .

[27]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[28]  J. Bertelsen,et al.  The interpretation of the general debye function as a distribution of relaxation times , 1974 .

[29]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[30]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[31]  A. Jurlewicz Limit theorems for randomly coarse grained continuous-time random walks , 2005 .

[32]  Karina Weron,et al.  HAVRILIAK-NEGAMI RESPONSE IN THE FRAMEWORK OF THE CONTINUOUS-TIME RANDOM WALK ∗ , 2005 .

[33]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.