A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres

[1]  Thomas C. Fessard,et al.  Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. , 2022, Journal of the American Chemical Society.

[2]  F. Glorius,et al.  Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer , 2022, Nature.

[3]  Murugaiah A. M. Subbaiah,et al.  Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. , 2021, Journal of medicinal chemistry.

[4]  Tian Qin,et al.  An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates , 2021, Nature Chemistry.

[5]  Julien C. Vantourout,et al.  1,2-Difunctionalized bicyclo[1.1.1]pentanes: Long–sought-after mimetics for ortho/meta-substituted arenes , 2021, Proceedings of the National Academy of Sciences.

[6]  Oliver Knowles,et al.  Recent advances in the chemistry of ketyl radicals , 2021, Chemical Society reviews.

[7]  Soumitra Agasti,et al.  SmI2-Catalyzed Intermolecular Coupling of Cyclopropyl Ketones and Alkynes: A Link between Ketone Conformation and Reactivity , 2021, Journal of the American Chemical Society.

[8]  M. Bauer,et al.  Put a ring on it: application of small aliphatic rings in medicinal chemistry. , 2021, RSC medicinal chemistry.

[9]  S. Shishkina,et al.  Saturated Bioisosteres of ortho ‐Substituted Benzenes , 2020, Angewandte Chemie.

[10]  T. Talele Opportunities for Tapping into Three-Dimensional Chemical Space Through a Quaternary Carbon. , 2020, Journal of medicinal chemistry.

[11]  G. S. Walker,et al.  Non-Classical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open Source Antimalarials. , 2020, Journal of medicinal chemistry.

[12]  S. Shishkina,et al.  Saturated mimetics for ortho-substituted benzenes. , 2020, Angewandte Chemie.

[13]  Pavel K. Mykhailiuk,et al.  Water-soluble non-classical benzene mimics. , 2020, Angewandte Chemie.

[14]  E. Sherer,et al.  Analysis of Benzenoid Substitution Patterns in Small Molecule Active Pharmaceutical Ingredients. , 2019, Journal of medicinal chemistry.

[15]  D. Procter,et al.  Catalytic cascade reactions by radical relay. , 2019, Chemical Society reviews.

[16]  V. A. Timofeeva,et al.  Upconversion of Reductants. , 2019, Angewandte Chemie.

[17]  S. Bernhard,et al.  Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. , 2019, Chemistry.

[18]  Pavel K. Mykhailiuk Saturated bioisosteres of benzene: where to go next? , 2019, Organic & biomolecular chemistry.

[19]  D. Procter,et al.  SmI2-catalysed cyclization cascades by radical relay , 2019, Nature Catalysis.

[20]  Pradipta Das,et al.  A Survey of the Structures of US FDA Approved Combination Drugs. , 2018, Journal of medicinal chemistry.

[21]  M. Kassiou,et al.  Cubanes in Medicinal Chemistry. , 2018, Journal of medicinal chemistry.

[22]  Thomas C. Fessard,et al.  Improving Nonspecific Binding and Solubility: Bicycloalkyl Groups and Cubanes as para‐Phenyl Bioisosteres , 2017, ChemMedChem.

[23]  Armido Studer,et al.  The electron is a catalyst. , 2014, Nature chemistry.

[24]  M. Szostak,et al.  Electron Transfer Reduction of Nitriles Using SmI2—Et3N—H2O: Synthetic Utility and Mechanism. , 2014 .

[25]  M. Szostak,et al.  Cross-coupling reactions using samarium(II) iodide. , 2014, Chemical reviews.

[26]  Richard D. Taylor,et al.  Rings in drugs. , 2014, Journal of medicinal chemistry.

[27]  M. Szostak,et al.  Electron transfer reduction of nitriles using SmI2-Et3N-H2O: synthetic utility and mechanism. , 2014, Organic letters.

[28]  Nathan Brown,et al.  Bioisosteres in Medicinal Chemistry: BROWN:BIOISOSTERES MED CH O-BK , 2012 .

[29]  Gregory W. Kauffman,et al.  Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. , 2012, Journal of medicinal chemistry.

[30]  N. Meanwell Synopsis of some recent tactical application of bioisosteres in drug design. , 2011, Journal of medicinal chemistry.

[31]  Nicholas A. McGrath,et al.  A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives , 2010 .

[32]  C. Humblet,et al.  Escape from flatland: increasing saturation as an approach to improving clinical success. , 2009, Journal of medicinal chemistry.

[33]  P. Wipf,et al.  Pericyclic cascade reactions of (bicyclo[1.1.0]butylmethyl)amines. , 2006, Angewandte Chemie.

[34]  E. Corey,et al.  Catalytic Reactions of Samarium(II) Iodide. , 1997 .

[35]  M. Raimondo,et al.  (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine, a structurally new group I metabotropic glutamate receptor antagonist. , 1996, Journal of medicinal chemistry.

[36]  H. Kagan,et al.  A NEW PREPARATION OF SOME DIVALENT LANTHANIDE IODIDES AND THEIR USEFULNESS IN ORGANIC SYNTHESIS , 1977 .

[37]  P. G. Gassman Thermal addition of carbon-carbon multiple bonds to strained carbocyclics , 1971 .

[38]  E. P. Blanchard,et al.  Bicyclo[1.1.0]butane Chemistry. II. Cycloaddition Reactions of 3-Methylbicyclo[1.1.0]butanecarbonitriles. The Formation of Bicyclo[2.1.1]hexanes , 1966 .

[39]  A. Meijere,et al.  Cycloadditions of methylenecyclopropanes and strained bicyclo[n.1.0]alkanes to radicophilic olefins , 1986 .