Reduction of Uncertainties in Multidisciplinary Analysis Based on a Polynomial Chaos Sensitivity Study

[1]  Zhiyi Li,et al.  Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications , 2019, Comput. Chem. Eng..

[2]  Nathalie Bartoli,et al.  Propagation of Modeling Uncertainty by Polynomial Chaos Expansion in Multidisciplinary Analysis , 2016 .

[3]  Brian J. German,et al.  Multidisciplinary Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties , 2016 .

[4]  Wei Chen,et al.  A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach With Model Uncertainty , 2015 .

[5]  Sankaran Mahadevan,et al.  Stochastic Multidisciplinary Analysis Under Epistemic Uncertainty , 2015 .

[6]  Michel Salaün,et al.  Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion , 2014, Reliab. Eng. Syst. Saf..

[7]  Sankaran Mahadevan,et al.  Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty , 2012 .

[8]  Roger Ghanem,et al.  Dimension reduction in stochastic modeling of coupled problems , 2011, 1112.4761.

[9]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[10]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[11]  Bertrand Iooss,et al.  Global sensitivity analysis of computer models with functional inputs , 2008, Reliab. Eng. Syst. Saf..

[12]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[13]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[14]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[15]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[16]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[17]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[18]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[19]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[20]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[21]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .