Geometric structure in the tempered dual of SL(4)

We exhibit a definite geometric structure in the tempered dual of SL(4, ℚp). Especially interesting is the case of SL(4, ℚ2), when we reveal a tetrahedron of reducibility in the tempered dual. This conforms to a recent geometric conjecture.

[1]  P. Baum,et al.  Geometric structure in the principal series of the p-adic group G_2 , 2008, 0810.0638.

[2]  P. Baum,et al.  Geometric structure in the representation theory of p-adic groups , 2006, math/0607381.

[3]  P. Baum,et al.  The Hecke algebra of a reductive p-adic group: a geometric conjecture , 2005, math/0502234.

[4]  A. Roche,et al.  Hecke Algebras and SLn‐Types , 2005 .

[5]  J. Brodzki,et al.  Geometry of the smooth dual of GL(n) , 2000, math/0007107.

[6]  D. Bump Automorphic Forms and Representations , 1998 .

[7]  A. Roche,et al.  Types and Hecke algebras for principal series representations of split reductive p-adic groups , 1998 .

[8]  Jian-yi Shi The Partial Order on Two-Sided Cells of Certain Affine Weyl Groups , 1996 .

[9]  D. Goldberg R-groups and elliptic representations for SLn , 1994 .

[10]  R. Plymen Reduced C∗-algebra for reductive p-adic groups , 1990 .

[11]  G. Lusztig Cells in affine Weyl groups, II , 1987 .

[12]  C. D. Keys On the decomposition of reducible principal series representations of $p$-adic Chevalley groups. , 1982 .

[13]  A. W. Knapp,et al.  L-indistinguishability and R groups for the special linear group , 1982 .

[14]  Anthony W. Knapp,et al.  Introduction to the Langlands Program , 2000 .

[15]  R. Plymen K-theory of the reduced C*-algebra of SL2(Qp) , 1985 .

[16]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[17]  W. Casselman The Steinberg character as a true character , 1972 .