Optimal trading strategies for Lévy-driven Ornstein–Uhlenbeck processes

ABSTRACT This study derives an optimal pairs trading strategy based on a Lévy-driven Ornstein–Uhlenbeck process and applies it to high-frequency data of the S&P 500 constituents from 1998 to 2015. Our model provides optimal entry and exit signals by maximizing the expected return expressed in terms of the first-passage time of the spread process. An explicit representation of the strategy’s objective function allows for direct optimization without Monte Carlo methods. Categorizing the data sample into 10 economic sectors, we depict both the performance of each sector and the efficiency of the strategy in general. Results from empirical back-testing show strong support for the profitability of the model with returns after transaction costs ranging from 31.90% p.a. for the sector ‘Consumer Staples’ to 278.61% p.a. for the sector ‘Financials’. We find that the remarkable returns across all economic sectors are strongly driven by model parameters and sector size. Jump intensity decreases over time with strong outliers in times of high market turmoil. The value-add of our Lévy-based model is demonstrated by benchmarking it with quantitative strategies based on Brownian motion-driven processes.

[1]  Kiyoshisa Suzuki Optimal pair-trading strategy over long/short/square positions—empirical study , 2018 .

[2]  Cindy L. Yu,et al.  A Bayesian Analysis of Return Dynamics with Lévy Jumps , 2008 .

[3]  Mark Cummins,et al.  Quantitative spread trading on crude oil and refined products markets , 2011 .

[4]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[5]  P. Tankov,et al.  MULTI-FACTOR JUMP-DIFFUSION MODELS OF ELECTRICITY PRICES , 2008 .

[6]  Narasimhan Jegadeesh,et al.  Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency , 1993 .

[7]  N. Todorova,et al.  Trading on mean-reversion in energy futures markets , 2015 .

[8]  Hui Wang,et al.  First passage times of a jump diffusion process , 2003, Advances in Applied Probability.

[9]  H. Gerber,et al.  Valuing equity-linked death benefits in jump diffusion models , 2013 .

[10]  Ruey S. Tsay,et al.  Analysis of Financial Time Series: Tsay/Analysis of Financial Time Series , 2005 .

[11]  Hilmar Mai,et al.  Efficient maximum likelihood estimation for Lévy-driven Ornstein–Uhlenbeck processes , 2014, 1403.2954.

[12]  J. Bollinger Bollinger on Bollinger Bands , 2001 .

[13]  Mark Cummins,et al.  Quantitative Spread Trading on Crude Oil and Refined Products Markets , 2011 .

[14]  Hélyette Geman,et al.  Intraday pairs trading strategies on high frequency data: the case of oil companies , 2017 .

[15]  Aswath Damodaran,et al.  Market Efficiency , 2019, Encyclopedia of GIS.

[16]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[17]  R. Baviera,et al.  Stop-loss and leverage in optimal statistical arbitrage with an application to energy market , 2017, Energy Economics.

[18]  M. Rockinger,et al.  Estimating the price impact of trades in a high-frequency microstructure model with jumps. , 2015 .

[19]  Industries and Stock Return Reversals , 2015 .

[20]  Erik Ekström,et al.  Optimal Liquidation of a Pairs Trade , 2011 .

[21]  Tim Leung,et al.  Optimal Mean Reversion Trading: Mathematical Analysis and Practical Applications , 2015 .

[22]  Steven Kou,et al.  Jumps in Equity Index Returns Before and During the Recent Financial Crisis: A Bayesian Analysis , 2017, Manag. Sci..

[23]  C. Ewald,et al.  Analytical Pairs Trading Under Different Assumptions on the Spread and Ratio Dynamics , 2010 .

[24]  Zhi Liu,et al.  MODELING HIGH-FREQUENCY FINANCIAL DATA BY PURE JUMP PROCESSES , 2012, 1206.0827.

[25]  Johannes Stübinger,et al.  Non-linear dependence modelling with bivariate copulas: statistical arbitrage pairs trading on the S&P 100 , 2017 .

[26]  C. Krauss,et al.  Statistical arbitrage with vine copulas , 2018 .

[27]  A. Novikov,et al.  On exit times of Levy-driven Ornstein–Uhlenbeck processes , 2007, 0709.1746.

[28]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[29]  Nicolas Huck,et al.  Pairs trading: does volatility timing matter? , 2015 .

[30]  W. K. Bertram A Non-Stationary Model for Statistical Arbitrage Trading , 2010 .

[31]  Chi-Guhn Lee,et al.  Pairs trading: optimal thresholds and profitability , 2014 .

[32]  Lan Wu,et al.  Analytic value function for optimal regime-switching pairs trading rules , 2018 .

[33]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[34]  J. Jacod,et al.  High-Frequency Financial Econometrics , 2014 .

[35]  George J. Miao High Frequency and Dynamic Pairs Trading Based on Statistical Arbitrage Using a Two-Stage Correlation and Cointegration Approach , 2014 .

[36]  W. P. Malcolm,et al.  Pairs trading , 2005 .

[37]  Ahmet Goncu,et al.  Statistical Arbitrage with Pairs Trading , 2016 .

[38]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[39]  W. K. Bertram,et al.  Optimal Trading Strategies for Ito Diffusion Processes , 2009 .

[40]  Xin Li Optimal Multiple Stopping Approach to Mean Reversion Trading , 2015 .

[41]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[42]  Johannes Stübinger,et al.  Pairs trading with a mean-reverting jump–diffusion model on high-frequency data , 2018 .

[43]  R. Faff,et al.  Are Pairs Trading Profits Robust to Trading Costs , 2012 .

[44]  Nicolas Huck,et al.  Pairs trading and selection methods: is cointegration superior? , 2015 .

[45]  M. Barlow A DIFFUSION MODEL FOR ELECTRICITY PRICES , 2002 .

[46]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[47]  Xin Li,et al.  Optimal Mean Reversion Trading with Transaction Costs and Stop-Loss Exit , 2014, 1411.5062.

[48]  Markos Katsanos The S&P 500 , 2012 .

[49]  Tim Bollerslev,et al.  Supplementary Appendix to : “ Jump Tails , Extreme Dependencies , and the Distribution of Stock Returns ” ∗ , 2011 .

[50]  Ahmet Göncü,et al.  A stochastic model for commodity pairs trading , 2016 .

[51]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[52]  Erhan Bayraktar,et al.  PRICING ASIAN OPTIONS FOR JUMP DIFFUSION , 2010 .

[53]  Svetlozar T. Rachev,et al.  A Profit Model for Spread Trading with an Application to Energy Futures , 2009, The Journal of Trading.

[54]  William N. Goetzmann,et al.  Pairs Trading: Performance of a Relative Value Arbitrage Rule , 1998 .

[55]  Stig Larsson,et al.  Optimal closing of a pair trade with a model containing jumps , 2010, 1004.2947.

[56]  Cecilia Mancini,et al.  Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps , 2006, math/0607378.

[57]  Matthew Clegg,et al.  Pairs trading with partial cointegration , 2018 .

[58]  Johannes Stübinger,et al.  Statistical Arbitrage Pairs Trading with High-frequency Data , 2017 .

[59]  Rafal Kulik,et al.  Model verification for Lévy-driven Ornstein-Uhlenbeck processes , 2014 .

[60]  Ming Huang,et al.  How Much of Corporate-Treasury Yield Spread is Due to Credit Risk? , 2002 .

[61]  K. Govender Statistical arbitrage in South African financial markets , 2011 .

[62]  Mathematisch-Naturwissenschaftlichen Fakultät,et al.  Drift estimation for jump diusions: time-continuous and high-frequency observations , 2012 .

[63]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[64]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[65]  Ibrahim Abdelrazeq Model verification for Lévy-driven Ornstein–Uhlenbeck processes with estimated parameters , 2015 .

[66]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[67]  Rafal Kulik,et al.  Goodness‐of‐fit tests for Lévy‐driven Ornstein‐Uhlenbeck processes , 2018 .

[68]  Á. Cartea,et al.  Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality , 2005 .

[69]  Johannes Stübinger,et al.  A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns , 2019, Quantitative Finance.

[70]  Timofei Bogomolov,et al.  Pairs trading based on statistical variability of the spread process , 2013 .

[71]  Michael Grottke,et al.  Exploiting social media with higher-order Factorization Machines: statistical arbitrage on high-frequency data of the S&P 500 , 2018, Quantitative Finance.

[72]  Manying Bai,et al.  First-Passage Time Model Driven by Lévy Process for Pricing CoCos , 2017 .

[73]  A. Mikkelsen Pairs trading: the case of Norwegian seafood companies , 2018 .

[74]  Rama Cont,et al.  Nonparametric tests for pathwise properties of semimartingales , 2011, 1104.4429.

[75]  C. Bacon Practical Portfolio Performance Measurement and Attribution , 2004 .

[76]  Steven G. Kou,et al.  A jump diffusion model for option pricing with three properties: leptokurtic feature, volatility smile, and analytical tractability , 2000, Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520).

[77]  Jorge Mina,et al.  Return to RiskMetrics: The Evolution of a Standard , 2001 .

[78]  Cyrus A. Ramezani,et al.  Maximum Likelihood Estimation of Asymmetric Jump-Diffusion Processes: Application to Security Prices , 1998 .

[79]  I. Eliazar First Passage Times , 2019 .

[80]  Mark C. Hutchinson,et al.  Pairs trading in the UK equity market: risk and return , 2014 .

[81]  H. Thompson,et al.  High-Frequency Financial Econometrics , 2016 .

[82]  Cyrus A. Ramezani,et al.  Maximum likelihood estimation of the double exponential jump-diffusion process , 2007 .

[83]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .