Some generalizations of a supercongruence of van Hamme
暂无分享,去创建一个
[1] F. Morley,et al. Note on the Congruence 2 4n ≡(-) n (2n)!/(n!) 2 , Where 2n + 1 is a Prime , 1894 .
[2] Ravi P. Agarwal. Generalized hypergeometric series , 1963 .
[3] Zhi-Wei Sun,et al. Products and Sums Divisible by Central Binomial Coefficients , 2010, Electron. J. Comb..
[4] R. Osburn,et al. A p-adic analogue of a formula of Ramanujan , 2007, 0708.3307.
[5] Ling Long,et al. Hypergeometric evaluation identities and supercongruences , 2009, 0912.0197.
[6] Wadim Zudilin,et al. Ramanujan-type supercongruences , 2008, 0805.2788.
[7] Victor J. W. Guo. A q -analogue of a Ramanujan-type supercongruence involving central binomial coefficients , 2018 .
[8] Eric T. Mortenson,et al. A p-ADIC SUPERCONGRUENCE CONJECTURE OF VAN HAMME , 2008 .
[9] Jonathan M. Borwein,et al. Modular Equations and Approximations to π , 2000 .
[10] Holly Swisher,et al. On the supercongruence conjectures of van Hamme , 2015, 1504.01028.