Identification of epilepsy genes in human and mouse.

The development of molecular markers and genomic resources has facilitated the isolation of genes responsible for rare monogenic epilepsies in human and mouse. Many of the identified genes encode ion channels or other components of neuronal signaling. The electrophysiological properties of mutant alleles indicate that neuronal hyperexcitability is one cellular mechanism underlying seizures. Genetic heterogeneity and allelic variability are hallmarks of human epilepsy. For example, mutations in three different sodium channel genes can produce the same syndrome, GEFS+, while individuals with the same allele can experience different types of seizures. Haploinsufficiency for the sodium channel SCN1A has been demonstrated by the severe infantile epilepsy and cognitive deficits in heterozygotes for de novo null mutations. Large-scale patient screening is in progress to determine whether less severe alleles of the genes responsible for monogenic epilepsy may contribute to the common types of epilepsy in the human population. The development of pharmaceuticals directed towards specific epilepsy genotypes can be anticipated, and the introduction of patient mutations into the mouse genome will provide models for testing these targeted therapies.

[1]  F. Conti,et al.  Skeletal muscle sodium channel is affected by an epileptogenic beta1 subunit mutation. , 2001, Biochemical and biophysical research communications.

[2]  J. McNamara,et al.  Seizure disorders in mutant mice: Relevance to human epilepsies , 1999, Current Opinion in Neurobiology.

[3]  J. McNamara Emerging insights into the genesis of epilepsy , 1999, Nature.

[4]  C. Fletcher,et al.  Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. , 1999, Journal of neurophysiology.

[5]  I. Scheffer,et al.  Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2 , 1995, Nature Genetics.

[6]  D. Mouthon,et al.  Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. , 1999, American journal of human genetics.

[7]  S. Horvath,et al.  No evidence for association between the KCNQ3 gene and susceptibility to idiopathic generalized epilepsy , 2000, Epilepsy Research.

[8]  Courtney A. Harper,et al.  A genomic screen of autism: evidence for a multilocus etiology. , 1999, American journal of human genetics.

[9]  A. Spauschus,et al.  A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. , 1999, Brain : a journal of neurology.

[10]  M. Meisler,et al.  Sodium Channels and Neurological Disease: Insights from Scn8a Mutations in the Mouse , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[11]  A. Ballabio,et al.  A new locus for autosomal dominant nocturnal frontal lobe epilepsy maps to chromosome 1 , 2000, Neurology.

[12]  A. Ziegler,et al.  Association analysis of exonic variants of the gene encoding the GABAB receptor and idiopathic generalized epilepsy. , 1999, American journal of medical genetics.

[13]  I. Scheffer,et al.  Mapping of a gene determining familial partial epilepsy with variable foci to chromosome 22q11-q12. , 1999, American journal of human genetics.

[14]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[15]  S Shinnar,et al.  Genome scan of idiopathic generalized epilepsy: Evidence for major susceptibility gene and modifying genes influencing the seizure type , 2001, Annals of neurology.

[16]  W. Frankel,et al.  Electroconvulsive thresholds of inbred mouse strains. , 2001, Genomics.

[17]  F. Ashcroft Ion channels and disease , 1999, Oxford Textbook of Medicine.

[18]  W. Frankel Detecting genes in new and old mouse models for epilepsy: a prospectus through the magnifying glass , 1999, Epilepsy Research.

[19]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[20]  C. Vorhees,et al.  Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. , 1999, American journal of physiology. Cell physiology.

[21]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Lander,et al.  Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel Current in Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[23]  W. Catterall Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. , 1999, Advances in neurology.

[24]  I. Scheffer,et al.  Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. , 2001, American journal of human genetics.

[25]  A. Ballabio,et al.  The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy , 2000, Nature Genetics.

[26]  M. Meisler,et al.  Mutation of the Ca2+ Channel β Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (lh) Mouse , 1997, Cell.

[27]  I. Scheffer,et al.  Genetics of the epilepsies , 2000, Current opinion in pediatrics.

[28]  T. Mayer,et al.  Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. , 2000, American journal of human genetics.

[29]  I. Scheffer,et al.  CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. , 2001, American journal of human genetics.

[30]  A. Heils,et al.  A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. , 2001, American journal of human genetics.

[31]  Dirk Feldmeyer,et al.  Early-Onset Epilepsy and Postnatal Lethality Associated with an Editing-Deficient GluR-B Allele in Mice , 1995, Science.

[32]  C. Mahaffey,et al.  The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit , 1998, Nature Genetics.

[33]  C. Wadelius,et al.  Centrotemporal spikes in families with rolandic epilepsy , 1998, Neurology.

[34]  J. Barclay,et al.  Genomic organization of the mouse and human α2δ2 voltage-dependent calcium channel subunit genes , 2000, Mammalian Genome.

[35]  C. Fletcher,et al.  Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[36]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.

[37]  B. Hille Ionic channels of excitable membranes , 2001 .

[38]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[39]  F Andermann,et al.  Severe Myoclonic Epilepsy of Infancy: Extended Spectrum of GEFS+? , 2001, Epilepsia.

[40]  R. Pullarkat,et al.  4 Biochemistry of neuronal ceroid lipofuscinoses , 2001 .

[41]  Michel Baulac,et al.  First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene , 2001, Nature Genetics.

[42]  B. Kerem,et al.  Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. , 2000, Circulation.

[43]  D. Feldmeyer,et al.  Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2 , 2000, Nature.

[44]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[45]  Douglas C. Wallace,et al.  Radicals r'aging , 1998, Nature Genetics.

[46]  L. Nashef,et al.  Association between the α1a calcium channel gene CACNA1A and idiopathic generalized epilepsy , 2001, Neurology.

[47]  S. Ryan Ion Channels and the Genetic Contribution to Epilepsy , 1999, Journal of child neurology.

[48]  S E Hodge,et al.  Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. , 1997, American journal of human genetics.

[49]  J. Pritchard Are rare variants responsible for susceptibility to complex diseases? , 2001, American journal of human genetics.

[50]  C. Fletcher,et al.  Ataxic mouse mutants and molecular mechanisms of absence epilepsy. , 1999, Human molecular genetics.

[51]  J. Noebels,et al.  Calcium Channel Defects in Models of Inherited Generalized Epilepsy , 2000, Epilepsia.

[52]  J. Hacia Resequencing and mutational analysis using oligonucleotide microarrays , 1999, Nature Genetics.

[53]  A. L. Goldin,et al.  Functional Effects of Two Voltage-Gated Sodium Channel Mutations That Cause Generalized Epilepsy with Febrile Seizures Plus Type 2 , 2001, The Journal of Neuroscience.

[54]  S. Berkovic,et al.  Molecular genetics of the idiopathic epilepsies: the next steps.... , 2001, Epileptic disorders : international epilepsy journal with videotape.

[55]  O. Steinlein,et al.  The voltage gated potassium channel KCNQ2 and idiopathic generalized epilepsy. , 1999, Neuroreport.

[56]  Richard Hawkes,et al.  Absence Epilepsy in Tottering Mutant Mice Is Associated with Calcium Channel Defects , 1996, Cell.

[57]  T. Wienker,et al.  Genome search for susceptibility loci of common idiopathic generalised epilepsies. , 2000, Human molecular genetics.

[58]  W. Hauser,et al.  Incidence of Epilepsy and Unprovoked Seizures in Rochester, Minnesota: 1935–1984 , 1993, Epilepsia.

[59]  Samuel F. Berkovic,et al.  Genetics of the Epilepsies , 2001, Epilepsia.

[60]  D. Contreras,et al.  Impaired Fast-Spiking, Suppressed Cortical Inhibition, and Increased Susceptibility to Seizures in Mice Lacking Kv3.2 K+ Channel Proteins , 2000, The Journal of Neuroscience.

[61]  I. Scheffer,et al.  Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. , 1997, Brain : a journal of neurology.

[62]  N. Risch,et al.  Localization of a gene for partial epilepsy to chromosome 10q , 1995, Nature Genetics.

[63]  A. C. Collins,et al.  The Role of RNA Editing of Kainate Receptors in Synaptic Plasticity and Seizures , 2001, Neuron.

[64]  O. Steinlein,et al.  Ion channels and epilepsy in man and mouse. , 2000, Current opinion in genetics & development.

[65]  W. Frankel,et al.  Sodium/Hydrogen Exchanger Gene Defect in Slow-Wave Epilepsy Mutant Mice , 1997, Cell.

[66]  W. Frankel,et al.  Biochemical and Biophysical Evidence for γ2 Subunit Association with Neuronal Voltage-activated Ca2+Channels* , 2001, The Journal of Biological Chemistry.

[67]  R. Gardiner Impact of our understanding of the genetic aetiology of epilepsy , 2000, Journal of Neurology.

[68]  C. Houser Neuronal loss and synaptic reorganization in temporal lobe epilepsy. , 1999, Advances in neurology.

[69]  O. Riess,et al.  Mapping, genomic structure, and polymorphisms of the human GABABR1 receptor gene: evaluation of its involvement in idiopathic generalized epilepsy , 1998, Neurogenetics.

[70]  Hao Wang,et al.  Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice , 1998, Neuron.

[71]  David A. Williams,et al.  Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures , 2001, Nature Genetics.

[72]  R. Reenan The RNA world meets behavior: A-->I pre-mRNA editing in animals. , 2001, Trends in genetics : TIG.

[73]  M. Ticku,et al.  An update on GABAA receptors , 1999, Brain Research Reviews.

[74]  H. Lerche,et al.  A sodium channel mutation causing epilepsy in man exhibits subtle defects in fast inactivation and activation in vitro , 2000, The Journal of physiology.

[75]  K. Nagayama,et al.  Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? , 2000, Biochemistry.

[76]  M. Baulac,et al.  A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. , 1999, American journal of human genetics.

[77]  Sebastian Pascarelle,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[78]  A. L. Goldin,et al.  A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities , 2001, Neuroscience.

[79]  C. Stafstrom,et al.  Epilepsy genes: the link between molecular dysfunction and pathophysiology. , 2000, Mental retardation and developmental disabilities research reviews.

[80]  R. Guerrini,et al.  Genetic Predisposition to Severe Myoclonic Epilepsy in Infancy , 2001, Epilepsia.

[81]  D Bertrand,et al.  An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. , 1997, Human molecular genetics.