Device- and Circuit-Level Variability Caused by Line Edge Roughness for Sub-32-nm FinFET Technologies

The variability impact of line edge roughness (LER) on sub-32-nm fin-shaped FET (FinFET) technologies is investigated from both device- and circuit-level perspectives using computer-aided design simulations. Resist-defined FinFETs exhibit sizeable device performance variation (up to 10% fluctuation in threshold voltage and 200% in leakage current) when subjected to fin roughness up to 1 nm root-mean-square amplitude. Spacer-defined FinFETs show negligible device performance variation and exhibit quadratic dependence with LER amplitude. For both patterning technologies, the resulting impact on large-scale digital-circuit performance variation is found to be minimal in terms of the overall delay mean and variation. This is attributed to self-averaging of uncorrelated LER effects between individual devices within the circuits, resulting in minimal delay impact for digital-circuit design. The impact of LER on leakage power variation is also found to be minimal for all technologies; however, the mean value increases by up to 40% for 15-nm resist FinFETs. On this basis, the impact of LER on sub-32-nm FinFET device-level variability is only significant for resist devices, whereas the resulting digital-circuit impact is important only in terms of mean leakage power increase.

[1]  Alan Mathewson,et al.  MOSFET statistical parameter extraction using multivariate statistics , 1990, Proceedings of the 1991 International Conference on Microelectronic Test Structures.

[2]  Rajendran Panda,et al.  Electrical impact of line-edge roughness on sub-45nm node standard cell , 2009, Advanced Lithography.

[3]  James D. Meindl,et al.  Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration , 2002, IEEE J. Solid State Circuits.

[4]  K. Takeuchi,et al.  Statistical Compact Model Parameter Extraction by Direct Fitting to Variations , 2008, IEEE Transactions on Electron Devices.

[5]  Chi On Chui,et al.  Variability of Inversion-Mode and Junctionless FinFETs due to Line Edge Roughness , 2011, IEEE Electron Device Letters.

[6]  Influence of interface roughness on quantum transport in nanoscale FinFET , 2007 .

[7]  Takashi Shinohe,et al.  Smoothing of Si Trench Sidewall Surface by Chemical Dry Etching and Sacrificial Oxidation , 1998 .

[8]  F. M. Bufler,et al.  Monte Carlo, Hydrodynamic and Drift-Diffusion Simulation of Scaled Double-Gate MOSFETs , 2003 .

[9]  Shimeng Yu,et al.  3-D simulation of geometrical variations impact on nanoscale FinFETs , 2008, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology.

[10]  M. Jurczak,et al.  Impact of LER and Random Dopant Fluctuations on FinFET Matching Performance , 2008, IEEE Transactions on Nanotechnology.

[11]  J. Bokor,et al.  FinFET process refinements for improved mobility and gate work function engineering , 2002, Digest. International Electron Devices Meeting,.

[12]  Chaitali Chakrabarti,et al.  Random variability modeling and its impact on scaled CMOS circuits , 2010 .

[13]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[14]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[15]  A. Mercha,et al.  Impact of line width roughness on the matching performances of next-generation devices , 2008 .

[16]  R. Rooyackers,et al.  Impact of Stochastic Mismatch on Measured SRAM Performance of FinFETs with Resist/Spacer-Defined Fins: Role of Line-Edge-Roughness , 2006, 2006 International Electron Devices Meeting.

[17]  Shimeng Yu,et al.  The impact of line edge roughness on the stability of a FinFET SRAM , 2009 .

[18]  Shimeng Yu,et al.  Impact of Line-Edge Roughness on Double-Gate Schottky-Barrier Field-Effect Transistors , 2009, IEEE Transactions on Electron Devices.

[19]  E.. Baravelli,et al.  Impact of Line-Edge Roughness on FinFET Matching Performance , 2007, IEEE Transactions on Electron Devices.

[20]  David Z. Pan,et al.  Electrical impact of line-edge roughness on sub-45-nm node standard cells , 2010 .

[21]  Tsu-Jae King,et al.  Improvement of FinFET electrical characteristics by hydrogen annealing , 2004, IEEE Electron Device Letters.

[22]  E. Baravelli,et al.  TCAD modeling and characterization of short-range variations in multiple-gate devices and circuit blocks , 2008, 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems.

[23]  Tsu-Jae King Liu,et al.  Gate Line Edge Roughness Model for Estimation of FinFET Performance Variability , 2009, IEEE Transactions on Electron Devices.

[24]  Jeffrey Bokor,et al.  Extremely scaled silicon nano-CMOS devices , 2003, Proc. IEEE.

[25]  Chenming Hu,et al.  Performance-Aware Corner Model for Design for Manufacturing , 2009, IEEE Transactions on Electron Devices.

[26]  Osama M. Nayfeh,et al.  Calibrated Hydrodynamic Simulation of Deeply-Scaled Well-Tempered Nanowire Field Effect Transistors , 2007 .

[27]  Modeling the impact of photoresist trim etch process on photoresist surface roughness , 2003 .