Accurate intermolecular ground state potential of the Ar–N2 complex

The ground state potential energy surface of the Ar–N2 van der Waals complex is evaluated using the coupled cluster singles and doubles model, including connected triples corrections (CCSD(T)) and the aug-cc-pVTZ basis set extended with midbond functions. From the calculated ab initio potential the rovibronic spectroscopic properties are determined and compared with the available experimental data. Considerable improvement is obtained when four of the potential parameters are refined based on the Ar–14N2 rotational transition frequencies. The small discrepancies remaining demonstrate that the coupled cluster method can be used to predict the spectroscopic properties of van der Waals complexes.

[1]  H. Koch,et al.  Accurate ab initio rovibronic spectrum of the X 1Σg+ and B 1Σu+ states in Ar2 , 1998 .

[2]  H. Koch,et al.  THE BENZENE-ARGON COMPLEX : A GROUND AND EXCITED STATE AB INITIO STUDY , 1998 .

[3]  F. Naumkin Molecular versus atom–atom interaction anisotropy in the case of the Ar–N2 van der Waals system , 1997 .

[4]  Trygve Helgaker,et al.  The molecular structure of ferrocene , 1996 .

[5]  Feng Wang Use of simulated infrared spectra to test N2-Ar pair potentials and dipole moment surfaces , 1996 .

[6]  E. Wishnow,et al.  Far‐infrared spectrum of N2 and N2‐noble gas mixtures near 80 K , 1996 .

[7]  W. J. Meath,et al.  EXCHANGE-COULOMB MODEL POTENTIAL ENERGY SURFACE FOR THE N2-AR INTERACTION , 1995 .

[8]  J. Makarewicz,et al.  Rovibrational Hamiltonian for molecular complexes , 1995 .

[9]  J. Makarewicz,et al.  Ab initio study of the potential energy surfaces and vibrational states of the LiCN and NaCN molecules , 1994 .

[10]  Alfred Bauder,et al.  Intermolecular dynamics of benzene–rare gas complexes as derived from microwave spectra , 1994 .

[11]  F. Tao A new approach to the efficient basis set for accurate molecular calculations: Applications to diatomic molecules , 1994 .

[12]  F. Tao,et al.  Ab initio potential energy curves and binding energies of Ar2 and Mg2 , 1994 .

[13]  W. Jäger,et al.  Pure rotational spectrum of, and potential-energy surface for, the Ar–N2 Van der Waals complex , 1994 .

[14]  Z. Slanina,et al.  Computational studies of atmospheric chemistry species. Part XI. A computational study of two ArN2 complexes , 1993 .

[15]  C. E. Dykstra,et al.  Interaction potentials for dimer and trimer complexes with molecular nitrogen , 1993 .

[16]  C. Wong,et al.  Multiproperty determination of a new N2-Ar intermolecular interaction potential energy surface , 1993 .

[17]  W. Jäger,et al.  The microwave spectrum of the van der Waals complex ArN2 , 1992 .

[18]  J. Tennyson,et al.  Calculated spectra for the N2-Ar van der Waals complex , 1990 .

[19]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[20]  M. Bowers,et al.  The anisotropic potentials of He–N2, Ne–N2, and Ar–N2 , 1988 .

[21]  A. Mckellar Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules , 1988 .

[22]  G. Brocks Bound and rotational resonance states and the infrared spectrum of N2Ar , 1988 .

[23]  Fernando Pirani,et al.  The N2Ar potential energy surface , 1983 .

[24]  J. Tennyson,et al.  The ab initio calculation of the vibrational‐rotational spectrum of triatomic systems in the close‐coupling approach, with KCN and H2Ne as examples , 1982 .

[25]  J. Bendtsen The rotational and rotation‐vibrational Raman spectra of 14N2, 14N15N and 15N2 , 1974 .

[26]  G. Ewing,et al.  Infra-red spectrum, structure and properties of the N2-Ar van der Waals molecule , 1974 .

[27]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .