Post-CMOS and Post-MEMS Compatible Flexible Skin Technologies: A Review

This paper reviews flexible skin technologies that enable monolithic integration of silicon CMOS circuits and high temperature MEMS devices on flexible substrates. The monolithic integration is achieved by fabricating CMOS circuits or MEMS sensors on silicon wafers first and then forming flexible skins by post-processing. In this sense, these flexible skin technologies are termed as post-CMOS and -MEMS compatible. Most flexible devices developed using these technologies share a common structure - silicon islands connected by flexible cables. Representative works in this field are reviewed. Important aspects such as materials, releasing methods, and interconnection methods are discussed. A brief comparison of post-CMOS and -MEMS compatible flexible skin technologies with other technologies is presented.

[1]  João Pedro Conde,et al.  Amorphous silicon air-gap resonators on large-area substrates , 2000 .

[2]  Yong Xu,et al.  A SIMPLE SOI-CMOS COMPATIBLE TECHNOLOGY TO MAKE FLEXIBLE ELECTRONICS , 2012 .

[3]  Yu-Chong Tai,et al.  Parylene-HT-based electret rotor generator , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[4]  Yu-Chong Tai,et al.  Gas-phase Silicon Etching With Bromine Trifluoride , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[5]  Chih-Ming Ho,et al.  Flexible shear stress sensor skin for aerodynamics applications , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[6]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Y. Tai,et al.  Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses , 2010, Journal of Microelectromechanical Systems.

[8]  Weileun Fang,et al.  Flexible carbon nanotubes electrode for neural recording. , 2009, Biosensors & bioelectronics.

[9]  Yong Xu,et al.  IC-integrated flexible shear-stress sensor skin , 2003 .

[10]  Zhenan Bao,et al.  Flexible, plastic transistor-based chemical sensors , 2009 .

[11]  Chih-Ming Ho,et al.  A flexible micromachine-based shear-stress sensor array and its application to separation-point detection , 2000 .

[12]  Bahgat Sammakia,et al.  Flexible chemiresistor sensors: thin film assemblies of nanoparticles on a polyethylene terephthalate substrate , 2010 .

[13]  Sanjiv Sambandan,et al.  Low temperature a-Si:H photodiodes and flexible image sensor arrays patterned by digital lithography , 2007 .

[14]  Jeffrey A. Loeb,et al.  3D NEURAL PROBES WITH COMBINED ELECTRICAL AND CHEMICAL INTERFACES , 2010 .

[15]  Yugang Sun,et al.  High‐Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles , 2007 .

[16]  E. Hwang,et al.  A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics , 2007, Journal of Microelectromechanical Systems.

[17]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[18]  Ernst Lueder,et al.  Matrix of light sensors addressed by a-Si:H TFTs on a flexible plastic substrate , 1999, Electronic Imaging.

[19]  John A. Rogers,et al.  Fabrication of Releasable Single‐Crystal Silicon–Metal Oxide Field‐Effect Devices and Their Deterministic Assembly on Foreign Substrates , 2011 .

[20]  Qinglong Zheng,et al.  Micromachined Piezoresistive Accelerometers Based on an Asymmetrically Gapped Cantilever , 2011, Journal of Microelectromechanical Systems.

[21]  Arokia Nathan,et al.  Low-Temperature Materials and Thin Film Transistors for Flexible Electronics , 2005, Proceedings of the IEEE.

[22]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[23]  Yu-Chong Tai,et al.  Underwater flexible shear-stress sensor skins , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[24]  C. Banda,et al.  Flip Chip Assembly of Thinned Silicon Die on Flex Substrates , 2008, IEEE Transactions on Electronics Packaging Manufacturing.

[25]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[26]  Igor A. Lavrov,et al.  Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording , 2008 .

[27]  John A Rogers,et al.  Thin, flexible sensors and actuators as 'instrumented' surgical sutures for targeted wound monitoring and therapy. , 2012, Small.

[28]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[29]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[30]  Hongrui Jiang,et al.  Fabrication of Large-Area Three-Dimensional Microstructures on Flexible Substrates by Microtransfer Printing Methods , 2012, Journal of Microelectromechanical Systems.

[31]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[32]  Zhongwei Jiang,et al.  A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals , 2006 .

[33]  Yongsheng Chen,et al.  Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors , 2011 .

[34]  Takao Someya,et al.  Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers , 2006 .

[35]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[36]  Jessin Koshy John,et al.  3-dimensional intracortical neural interface for the study of epilepsy , 2012 .

[37]  Hongen Tu,et al.  A post silicon-on-insulator compatible smart tube technology. , 2013, Lab on a chip.

[38]  Wei-Jung Hsieh,et al.  Fabrication of micro sensors on a flexible substrate , 2008 .

[39]  Weidong Zhou,et al.  High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate , 2011 .

[40]  Zhenwei Hou,et al.  Flexible Electronics: Thin Silicon Die on Flexible Substrates , 2009, IEEE Transactions on Electronics Packaging Manufacturing.

[41]  Chang Liu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Development of Polyimide Flexible Tactile Sensor Skin , 2022 .

[42]  T. Jackson,et al.  Flexible substrate micro-crystalline silicon and gated amorphous silicon strain sensors , 2006, IEEE Transactions on Electron Devices.

[43]  E. Wang,et al.  Super-elastic graphene ripples for flexible strain sensors. , 2011, ACS nano.

[44]  Manish K. Tiwari,et al.  Electrospun Nanocomposites as Flexible Sensors , 2008 .

[45]  S. Roth,et al.  Transparent and flexible carbon nanotube/polyaniline pH sensors , 2006 .

[46]  Barbara Stadlober,et al.  Low‐Voltage Organic Thin‐Film Transistors with High‐k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors , 2007 .

[47]  Pallab Bhattacharya,et al.  Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes , 2009 .

[48]  Nicholas V. Annetta,et al.  A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology , 2010, Science Translational Medicine.

[49]  C-Y Hsieh,et al.  A Biocompatible and Flexible RF CMOS Technology and the Characterization of the Flexible MOS Transistors under Bending Stresses , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[50]  Sigurd Wagner,et al.  Flexible membrane pressure sensor , 2005 .

[51]  Yu-Chong Tai,et al.  A Fully Integrated Shear Stress Sensor , 1999 .

[52]  V. Henneken,et al.  Ultra-flexible devices for 360 μm diameter guidewires , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[53]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[54]  S. J. Kim,et al.  Biocompatibility of polyimide microelectrode array for retinal stimulation , 2004 .

[55]  David J. Beebe,et al.  A flexible polyimide-based package for silicon sensors , 1994 .

[56]  Yu-Chong Tai,et al.  Micromachined thermal shear-stress sensor for underwater applications , 2005, Journal of Microelectromechanical Systems.

[57]  S. Wagner,et al.  Amorphous silicon thin-film transistors on steel foil substrates , 1996, IEEE Electron Device Letters.

[58]  Hongen Tu,et al.  Development of individually-addressable parylene microtube arrays , 2011 .

[59]  Hyung-Kew Lee,et al.  A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment , 2006, Journal of Microelectromechanical Systems.

[60]  Bedrich J. Hosticka,et al.  Flexible silicon structures for a retina implant , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[61]  K. Wise,et al.  Silicon ribbon cables for chronically implantable microelectrode arrays , 1994, IEEE Transactions on Biomedical Engineering.

[62]  John A. Rogers,et al.  Large‐Area, Selective Transfer of Microstructured Silicon: A Printing‐ Based Approach to High‐Performance Thin‐Film Transistors Supported on Flexible Substrates , 2005 .

[63]  Hiroyuki Kudo,et al.  A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques. , 2006, Biosensors & bioelectronics.

[64]  V. Lumelsky,et al.  Sensitive skin , 2000, IEEE Sensors Journal.

[65]  Kuei-Ann Wen,et al.  A flexible mixed-signal/RF CMOS technology for implantable electronics applications , 2010 .

[66]  Hongen Tu,et al.  A SOI-CMOS compatible smart yarn technology , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[67]  Won Il Park,et al.  Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors , 2011 .

[68]  Zhong Lin Wang,et al.  Air/Liquid‐Pressure and Heartbeat‐Driven Flexible Fiber Nanogenerators as a Micro/Nano‐Power Source or Diagnostic Sensor , 2011, Advanced materials.

[69]  Ravinder Dahiya,et al.  Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates , 2012 .

[70]  Heung Cho Ko,et al.  Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. , 2009, Small.

[71]  Nuanyang Cui,et al.  High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates , 2011 .

[72]  Zhenqiang Ma,et al.  High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers , 2006 .

[73]  Cheng Lv,et al.  A robust polymer microcable structure for flexible devices , 2013 .

[74]  Adam Huang,et al.  Flexible shear-stress sensor skin and its application to unmanned aerial vehicles , 2003 .

[75]  Elvira Fortunato,et al.  Flexible large area thin film position sensitive detectors , 2000 .

[76]  Yong Xu,et al.  A novel intelligent textile technology based on silicon flexible skins , 2005, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[77]  J. Webster,et al.  A silicon-based tactile sensor for finger-mounted applications , 1998, IEEE Transactions on Biomedical Engineering.

[78]  J. N. Burghartz,et al.  Two-Dimensional Flex Sensor Exploiting Stacked Ultrathin Chips , 2012, IEEE Electron Device Letters.

[79]  Yu-Chong Tai,et al.  A MEMS multi-sensor chip for gas flow sensing , 2005 .

[80]  Fabrice Axisa,et al.  Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention , 2005, IEEE Transactions on Information Technology in Biomedicine.

[81]  Sigurd Wagner,et al.  Silicon for thin-film transistors , 2003 .

[82]  J. Rogers,et al.  Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon , 2008, IEEE Electron Device Letters.

[83]  John A Rogers,et al.  A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. , 2005, Small.

[84]  K. Wise,et al.  A Three-Dimensional 64-Site Folded Electrode Array Using Planar Fabrication , 2011, Journal of Microelectromechanical Systems.

[85]  K. Wise,et al.  A 64-site multishank CMOS low-profile neural stimulating probe , 1996, IEEE J. Solid State Circuits.

[86]  P. Barth,et al.  Flexible circuit and sensor arrays fabricated by monolithic silicon technology , 1985, IEEE Transactions on Electron Devices.

[87]  J. Rogers,et al.  Stretchable Inorganic‐Semiconductor Electronic Systems , 2011, Advanced materials.

[88]  Shuo-Hung Chang,et al.  Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity , 2008 .

[89]  Sanjeev K. Manohar,et al.  Flexible vapour sensors using single walled carbon nanotubes , 2006 .

[90]  Hongen Tu,et al.  A silicon-on-insulator complementary-metal-oxide-semiconductor compatible flexible electronics technology , 2012 .

[91]  John A. Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010 .

[92]  Mikhail Kozlov,et al.  Flexible carbon nanotube sensors for nerve agent simulants , 2006, Nanotechnology.

[93]  Jeffrey A. Loeb,et al.  Microfabrication of 3D neural probes with combined electrical and chemical interfaces , 2010 .

[94]  P. Ajayan,et al.  Flexible piezoelectric ZnO-paper nanocomposite strain sensor. , 2010, Small.

[95]  A. Erdman,et al.  Flexible Tactile Sensor for Tissue Elasticity Measurements , 2009, Journal of Microelectromechanical Systems.

[96]  J. Rogers,et al.  A printable form of silicon for high performance thin film transistors on plastic substrates , 2004 .