Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits

[1]  B. Everitt,et al.  N-acetylcysteine Facilitates Self-Imposed Abstinence After Escalation of Cocaine Intake , 2016, Biological Psychiatry.

[2]  A. Bonci,et al.  How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction , 2016, Biological Psychiatry.

[3]  Ian R. Wickersham,et al.  A Circuit Mechanism for Differentiating Positive and Negative Associations , 2015, Nature.

[4]  K. Berridge,et al.  Optogenetic Excitation of Central Amygdala Amplifies and Narrows Incentive Motivation to Pursue One Reward Above Another , 2014, The Journal of Neuroscience.

[5]  B. Everitt,et al.  Increased Impulsivity Retards the Transition to Dorsolateral Striatal Dopamine Control of Cocaine Seeking , 2014, Biological Psychiatry.

[6]  B. Everitt Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories – indications for novel treatments of addiction* , 2014, The European journal of neuroscience.

[7]  G. Koob,et al.  Addiction as a stress surfeit disorder , 2014, Neuropharmacology.

[8]  R. Wise,et al.  The Development and Maintenance of Drug Addiction , 2014, Neuropsychopharmacology.

[9]  G. Koob,et al.  Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley , 2013, Neuroscience & Biobehavioral Reviews.

[10]  Brian R. Lee,et al.  Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving , 2013, Nature Neuroscience.

[11]  Dardo Tomasi,et al.  Unbalanced neuronal circuits in addiction , 2013, Current Opinion in Neurobiology.

[12]  B. Everitt,et al.  Addiction: failure of control over maladaptive incentive habits , 2013, Current Opinion in Neurobiology.

[13]  Shauna L. Parkes,et al.  Incentive Memory: Evidence the Basolateral Amygdala Encodes and the Insular Cortex Retrieves Outcome Values to Guide Choice between Goal-Directed Actions , 2013, The Journal of Neuroscience.

[14]  T. Robbins,et al.  Cocaine Modulation of Frontostriatal Expression of Zif268, D2, and 5-HT2c Receptors in High and Low Impulsive Rats , 2013, Neuropsychopharmacology.

[15]  B. Everitt,et al.  Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use , 2012, Proceedings of the National Academy of Sciences.

[16]  D. Belin Addictions - From Pathophysiology to Treatment , 2012 .

[17]  B. Everitt,et al.  Double Dissociation of the Dorsomedial and Dorsolateral Striatal Control Over the Acquisition and Performance of Cocaine Seeking , 2012, Neuropsychopharmacology.

[18]  B. Everitt,et al.  Differential Roles of the Dorsolateral and Midlateral Striatum in Punished Cocaine Seeking , 2012, The Journal of Neuroscience.

[19]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[20]  B. Balleine,et al.  Amygdala Central Nucleus Interacts with Dorsolateral Striatum to Regulate the Acquisition of Habits , 2012, The Journal of Neuroscience.

[21]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[22]  A. Zapata,et al.  Shift from Goal-Directed to Habitual Cocaine Seeking after Prolonged Experience in Rats , 2010, The Journal of Neuroscience.

[23]  P. Holland,et al.  The central amygdala projection to the substantia nigra reflects prediction error information in appetitive conditioning. , 2010, Learning & memory.

[24]  Karl Mann,et al.  Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. , 2010, Addiction.

[25]  B. Everitt,et al.  Drug Addiction: the Neural and Psychological Basis of a Compulsive Incentive Habit , 2010 .

[26]  Kuei Yuan Tseng,et al.  Handbook of basal ganglia structure and function , 2010 .

[27]  A. Dickinson,et al.  Parallel and interactive learning processes within the basal ganglia: Relevance for the understanding of addiction , 2009, Behavioural Brain Research.

[28]  Mark G. Packard,et al.  The amygdala and emotional modulation of competition between cognitive and habit memory , 2008, Behavioural Brain Research.

[29]  S. Nicola,et al.  Basolateral Amygdala Neurons Facilitate Reward-Seeking Behavior by Exciting Nucleus Accumbens Neurons , 2008, Neuron.

[30]  A. Grace,et al.  Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. , 2008, Cerebral cortex.

[31]  S. J. Shammah-Lagnado,et al.  The indirect amygdala–dorsal striatum pathway mediates conditioned freezing: Insights on emotional memory networks , 2008, Neuroscience.

[32]  B. Everitt,et al.  Cocaine Seeking Habits Depend upon Dopamine-Dependent Serial Connectivity Linking the Ventral with the Dorsal Striatum , 2008, Neuron.

[33]  Michael A. Nader,et al.  The effects of cocaine: A shifting target over the course of addiction , 2007, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[34]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[35]  P. Holland,et al.  Dissociable effects of disconnecting amygdala central nucleus from the ventral tegmental area or substantia nigra on learned orienting and incentive motivation , 2007, The European journal of neuroscience.

[36]  N. Volkow,et al.  Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction , 2006, The Journal of Neuroscience.

[37]  B. Balleine,et al.  Parallel incentive processing: an integrated view of amygdala function , 2006, Trends in Neurosciences.

[38]  F. Gonon,et al.  Cortical Inputs and GABA Interneurons Imbalance Projection Neurons in the Striatum of Parkinsonian Rats , 2006, The Journal of Neuroscience.

[39]  T. Robbins,et al.  Erratum: Neural systems of reinforcement for drug addition: from actions to habits to compulsion , 2006, Nature Neuroscience.

[40]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[41]  B. Everitt,et al.  Involvement of the Dorsal Striatum in Cue-Controlled Cocaine Seeking , 2005, The Journal of Neuroscience.

[42]  Stéphane Charpier,et al.  Feedforward Inhibition of Projection Neurons by Fast-Spiking GABA Interneurons in the Rat Striatum In Vivo , 2005, The Journal of Neuroscience.

[43]  B. Balleine,et al.  Double Dissociation of Basolateral and Central Amygdala Lesions on the General and Outcome-Specific Forms of Pavlovian-Instrumental Transfer , 2005, The Journal of Neuroscience.

[44]  T. Robbins,et al.  Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement , 1996, Psychopharmacology.

[45]  T. Robbins,et al.  The hippocampus and appetitive Pavlovian conditioning: Effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping , 2005, Hippocampus.

[46]  M. Packard,et al.  Amygdala and “emotional” modulation of the relative use of multiple memory systems , 2004, Neurobiology of Learning and Memory.

[47]  B. Everitt,et al.  Direct Interactions between the Basolateral Amygdala and Nucleus Accumbens Core Underlie Cocaine-Seeking Behavior by Rats , 2004, The Journal of Neuroscience.

[48]  Michael A. Nader,et al.  Behavioral/systems/cognitive Cocaine Self-administration Produces a Progressive Involvement of Limbic, Association, and Sensorimotor Striatal Domains , 2022 .

[49]  S. Killcross,et al.  Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats , 2003, Behavioural Brain Research.

[50]  J. Fudge,et al.  The extended amygdala and the dopamine system: another piece of the dopamine puzzle. , 2003, The Journal of neuropsychiatry and clinical neurosciences.

[51]  P. Holland,et al.  Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus‐potentiated feeding and Pavlovian‐instrumental transfer , 2003, The European journal of neuroscience.

[52]  T. Levine,et al.  Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research , 2002 .

[53]  L. Panlilio,et al.  Second-order schedules of drug self-administration in animals , 2002, Psychopharmacology.

[54]  A. Phillips,et al.  Glutamate Receptor-Dependent Modulation of Dopamine Efflux in the Nucleus Accumbens by Basolateral, But Not Central, Nucleus of the Amygdala in Rats , 2002, The Journal of Neuroscience.

[55]  P. Kalivas,et al.  The Circuitry Mediating Cocaine-Induced Reinstatement of Drug-Seeking Behavior , 2001, The Journal of Neuroscience.

[56]  A. Parent,et al.  The Nigrostriatal Pathway in the Rat: A Single-Axon Study of the Relationship between Dorsal and Ventral Tier Nigral Neurons and the Striosome/Matrix Striatal Compartments , 2001, The Journal of Neuroscience.

[57]  M. Nader,et al.  Progression of Changes in Dopamine Transporter Binding Site Density as a Result of Cocaine Self-Administration in Rhesus Monkeys , 2001, The Journal of Neuroscience.

[58]  A. Dickinson,et al.  Cocaine seeking by rats is a goal-directed action. , 2001, Behavioral neuroscience.

[59]  T. Robbins,et al.  Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour , 2000, Psychopharmacology.

[60]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[61]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[62]  John R Martin,et al.  Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell , 1999, The European journal of neuroscience.

[63]  T. Robbins,et al.  Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala , 1997, Nature.

[64]  P. Holland,et al.  The Role of an Amygdalo-Nigrostriatal Pathway in Associative Learning , 1997, The Journal of Neuroscience.

[65]  P. Holland,et al.  Neurotoxic Lesions of Basolateral, But Not Central, Amygdala Interfere with Pavlovian Second-Order Conditioning and Reinforcer Devaluation Effects , 1996, The Journal of Neuroscience.

[66]  R. Malenka,et al.  Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  M. Roger,et al.  Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat , 1992, Neuroscience Research.

[68]  A. McDonald,et al.  Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain , 1991, Neuroscience.

[69]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[70]  T. Robbins,et al.  Involvement of the amygdala in stimulus-reward associations: Interaction with the ventral striatum , 1989, Neuroscience.

[71]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[72]  C. Gerfen,et al.  The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[74]  W. Nauta,et al.  The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods , 1982, Neuroscience.

[75]  W. H. Morse,et al.  Second-Order Schedules of Drug Injection , 1975 .

[76]  T. Powell,et al.  The synaptic organization of the caudate nucleus. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.