Non-uniform recursive subdivision surfaces

Doo-Sabin and Catmull-Clark subdivision surfaces are based on the notion of repeated knot insertion of uniform tensor product B-spline surfaces. This paper develops rules for non-uniform Doo-Sabin and Catmull-Clark surfaces that generalize non-uniform tensor product Bspline surfaces to arbitrary topologies. This added flexibility allows, among other things, the natural introduction of features such as cusps, creases, and darts, while elsewhere maintaining the same order of continuity as their uniform counterparts.

[1]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[2]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[3]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[4]  Carl de Boor,et al.  Cutting corners always works , 1987, Comput. Aided Geom. Des..

[5]  Jörg Peters,et al.  Joining smooth patches around a vertex to form a Ck surface , 1992, Comput. Aided Geom. Des..

[6]  Jörg Peters,et al.  Smooth free-form surfaces over irregular meshes generalizing quadratic splines , 1993, Comput. Aided Geom. Des..

[7]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[8]  M. A. Sabin,et al.  Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.

[9]  R. Riesenfeld On Chaikin's algorithm , 1975 .

[10]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[11]  G. Farin Designing C1 surfaces consisting of triangular cubic patches , 1982 .

[12]  Charles T. Loop,et al.  Smooth spline surfaces over irregular meshes , 1994, SIGGRAPH.

[13]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[14]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[15]  Ahmad H. Nasri,et al.  Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.

[16]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[17]  A. A. Ball,et al.  Design of an n-sided surface patch from Hermite boundary data , 1989, Comput. Aided Geom. Des..

[18]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[19]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[20]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[21]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[22]  Ahmad H. Nasri,et al.  Curve interpolation in recursively generated B-spline surfaces over arbitrary topology , 1997, Comput. Aided Geom. Des..

[23]  J. Peters,et al.  C 1 -surface splines , 1995 .

[24]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[25]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[26]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .