A computer model for simulating ultrasonic scattering in biological tissues with high scatterer concentration.

Scattering of ultrasonic waves by biological tissues at different scatterer concentrations is investigated using one- and two-dimensional computer simulation models. The backscattered power as a function of scatterer concentrations is calculated using two types of incident waves, a Gaussian shaped pulse and a continuous wave (CW). The simulation results are in good agreement with the Percus-Yevick packing theory within the scatterer concentrations, from 0% to 100% in one-dimensional (1D) space, and 0% to 46% in two-dimensional (2D) space. In all cases, the simulation results from a pulsed incident wave show a much smaller standard deviation (SD) than those from an incident CW. The simulation can serve as a useful tool to verify scattering theories, simulate different experimental conditions, and to investigate the interaction between the scatterer properties and the scattering of ultrasonic waves. More importantly, the 2D simulation procedure serves as an initial step toward the final realization of a true three-dimensional (3D) simulation of ultrasonic scattering in biological tissues.

[1]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[2]  L. Rayleigh,et al.  The theory of sound , 1894 .

[3]  K.K. Shung,et al.  Scattering of ultrasound from skeletal muscle tissue , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  K.K. Shung,et al.  Ultrasound scattering from blood with hematocrits up to 100% , 1994, IEEE Transactions on Biomedical Engineering.

[5]  K. Shung,et al.  On the Ultrasound Scattering from Blood as a Function of Hematocrit , 1982, IEEE Transactions on Sonics and Ultrasonics.

[6]  E. Madsen,et al.  A three dimensional model for generating the texture in B-scan ultrasound images. , 1982, Ultrasonic imaging (Print).

[7]  John M. Reid,et al.  Scattering of Ultrasound by Blood , 1976, IEEE Transactions on Biomedical Engineering.

[8]  M S Patterson,et al.  Computer Simulations of Speckle in B-Scan Images , 1983, Ultrasonic imaging.

[9]  Eytan Domany,et al.  The Born approximation in the theory of the scattering of elastic waves by flaws , 1977 .

[10]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[11]  F. Dunn,et al.  Ultrasonic Scattering in Biological Tissues , 1992 .

[12]  N Bom,et al.  Ultrasound myocardial integrated backscatter signal processing: frequency domain versus time domain. , 1993, Ultrasound in medicine & biology.

[13]  A N Venetsanopoulos,et al.  Modelling and restoration of ultrasonic phased-array B-scan images. , 1985, Ultrasonic imaging.

[14]  Song B. Park,et al.  Modeling and Computer Simulation of Ultrasound Imaging Systems and Human Tissues , 1988 .

[15]  John M. Reid,et al.  Angular Dependence of Scattering of Ultrasound from Blood , 1977, IEEE Transactions on Biomedical Engineering.

[16]  W. Gough,et al.  Weak reflection of a wave by a one-dimensional array of randomly spaced elements, with reference to the scattering of ultrasound by blood. , 1988, Physics in Medicine and Biology.

[17]  V. Twersky,et al.  Low-Frequency Scattering by Correlated Distributions of Randomly Oriented Particles , 1987 .

[18]  E. Jacobs,et al.  A simulation study of echographic imaging of diffuse and structurally scattering media. , 1991 .

[19]  V. Twersky,et al.  Acoustic bulk parameters in distributions of pair‐correlated scatterers , 1978 .