A Framework of a Model-Based Simulation System for Prediction of Surface Generation in Fast Tool Servo Machining of Optical Microstructures

The fabrication of high-quality optical microstructural surfaces is based on fast tool servo (FTS) machining. It makes use of auxiliary piezo-electric driven servos to rapidly actuate the diamond tool with a fine resolution and a sufficiently high bandwidth for machining optical microstructures with submicrometer form accuracy and a nanometric surface finish without the need for any subsequent post processing. However, the achievement of a superior mirror finish and form accuracy still depends largely on the experience and skills of the machine operators, acquired through an expensive trial-and-error approach to using new materials, new mircostructural surface designs, or new machine tools. As a result, this paper, a model-based simulation system is presented for the optimization of surface quality in the FTS machining of optical microstructures. Preliminary experimental work and the results are also presented.