Combined length scales in dissipative particle dynamics.

When a particle model simulates fluid behavior, the calculation of all particle interactions causes long computation times. Especially in mesoscale simulations, the bulk areas can be computationally demanding. To reduce the time spent on such regions, we propose a model that combines different length scales in one system. This is a particle analog to mesh refinement in, for instance, finite-element methods. To this end, we define particles of a coarse-grained scale within the framework of dissipative particle dynamics. These particles have a lower number density, but the same mass density, pressure, temperature, and viscosity as the original description. Furthermore, the coarse-grained particles can directly interact with the "normal" particles. The two length scales are combined in one system, coupled by an overlap region. At the edges of this region, particles transform into the other scale, through local refining or coarse graining. The resulting combined system adequately reproduces the properties and flow behavior of a normal system. When half the system is coarse grained, the computation time reduces by a factor of two. Thus, computational efficiency can be greatly increased for a variety of mesoscale applications.

[1]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[2]  P Español,et al.  Thermodynamically consistent mesoscopic fluid particle model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Pep Español,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 1605–1625 PII: S0305-4470(02)28700-4 , 2022 .

[5]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[7]  P. Coveney,et al.  Dynamical geometry for multiscale dissipative particle dynamics , 2003, cond-mat/0301378.

[8]  S. Edwards,et al.  The computer study of transport processes under extreme conditions , 1972 .

[9]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[10]  P. Español,et al.  FLUID PARTICLE MODEL , 1998 .

[11]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[13]  Peter V. Coveney,et al.  From Molecular Dynamics to Dissipative Particle Dynamics , 1999 .

[14]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[15]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[16]  Reinier L. C. Akkermans,et al.  Coarse-grained dynamics of one chain in a polymer melt , 2000 .

[17]  A. Liwo,et al.  A united‐residue force field for off‐lattice protein‐structure simulations. I. Functional forms and parameters of long‐range side‐chain interaction potentials from protein crystal data , 1997 .

[18]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[19]  Witold Dzwinel,et al.  Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model , 2002, Journal of molecular modeling.

[20]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[21]  B. Smit,et al.  Comparison of mesoscopic phospholipid-water models , 2004 .

[22]  M. H. Ernst,et al.  Static and dynamic properties of dissipative particle dynamics , 1997, cond-mat/9702036.

[23]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[24]  A. Patera,et al.  Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems , 1997 .

[25]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[26]  Jun-ichi Takimoto,et al.  A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions , 2002 .

[27]  Flekkoy,et al.  Foundations of dissipative particle dynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Pep Español,et al.  Coarse-Graining of a Fluid and its Relation with Dissipative Particle Dynamics and Smoothed Particle Dynamic , 1997 .

[29]  R. D. Groot,et al.  Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. , 2001, Biophysical journal.

[30]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[31]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[32]  H. Hoefsloot,et al.  Poiseuille flow to measure the viscosity of particle model fluids. , 2005, The Journal of chemical physics.

[33]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .