Parameterized complexity of distance labeling and uniform channel assignment problems
暂无分享,去创建一个
[1] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[2] Udi Rotics,et al. Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract) , 2001, SODA '01.
[3] András Frank,et al. An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..
[4] Jan van Leeuwen,et al. lambda-Coloring of Graphs , 2000, STACS.
[5] Daniel Kra´l’. The Channel Assignment Problem with Variable Weights , 2006 .
[6] Gerard J. Chang,et al. The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..
[7] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[8] Jirí Fiala,et al. Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract) , 2008, ICALP.
[9] Jirí Fiala,et al. Distance Constrained Labelings of Graphs of Bounded Treewidth , 2005, ICALP.
[10] Michael Lampis,et al. Algorithmic Meta-theorems for Restrictions of Treewidth , 2010, Algorithmica.
[11] Jan Kratochvíl,et al. Fixed-parameter complexity of lambda-labelings , 2001, Discret. Appl. Math..
[12] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[13] Jirí Fiala,et al. Parameterized complexity of coloring problems: Treewidth versus vertex cover , 2009, Theor. Comput. Sci..
[14] Egon Wanke,et al. The NLC-width and clique-width for powers of graphs of bounded tree-width , 2009, Discret. Appl. Math..
[15] Udi Rotics,et al. On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..
[16] Petr A. Golovach,et al. Intractability of Clique-Width Parameterizations , 2010, SIAM J. Comput..
[17] Bruce A. Reed,et al. Channel assignment on graphs of bounded treewidth , 2003, Discret. Math..
[18] Jerrold R. Griggs,et al. Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..
[19] Robert Ganian,et al. Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes , 2013, IWOCA.
[20] Jakub Gajarský,et al. Parameterized Algorithms for Modular-Width , 2013, IPEC.
[21] Egon Wanke,et al. k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..