Parameterized complexity of distance labeling and uniform channel assignment problems

Abstract We rephrase the Distance labeling problem as a specific uniform variant of the Channel Assignment problem and show that the latter one is fixed parameter tractable when parameterized by the neighborhood diversity together with the largest weight. Consequently, the Distance labeling problem is FPT when parameterized by the neighborhood diversity, the maximum p i and k . This is indeed a more general answer to an open question of Fiala et al.: Parameterized complexity of coloring problems: Treewidth versus vertex cover. Finally, we show that the uniform variant of the Channel Assignment problem becomes NP -complete when generalized to graphs of bounded clique width.

[1]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[2]  Udi Rotics,et al.  Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract) , 2001, SODA '01.

[3]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[4]  Jan van Leeuwen,et al.  lambda-Coloring of Graphs , 2000, STACS.

[5]  Daniel Kra´l’ The Channel Assignment Problem with Variable Weights , 2006 .

[6]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[7]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[8]  Jirí Fiala,et al.  Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract) , 2008, ICALP.

[9]  Jirí Fiala,et al.  Distance Constrained Labelings of Graphs of Bounded Treewidth , 2005, ICALP.

[10]  Michael Lampis,et al.  Algorithmic Meta-theorems for Restrictions of Treewidth , 2010, Algorithmica.

[11]  Jan Kratochvíl,et al.  Fixed-parameter complexity of lambda-labelings , 2001, Discret. Appl. Math..

[12]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[13]  Jirí Fiala,et al.  Parameterized complexity of coloring problems: Treewidth versus vertex cover , 2009, Theor. Comput. Sci..

[14]  Egon Wanke,et al.  The NLC-width and clique-width for powers of graphs of bounded tree-width , 2009, Discret. Appl. Math..

[15]  Udi Rotics,et al.  On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..

[16]  Petr A. Golovach,et al.  Intractability of Clique-Width Parameterizations , 2010, SIAM J. Comput..

[17]  Bruce A. Reed,et al.  Channel assignment on graphs of bounded treewidth , 2003, Discret. Math..

[18]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[19]  Robert Ganian,et al.  Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes , 2013, IWOCA.

[20]  Jakub Gajarský,et al.  Parameterized Algorithms for Modular-Width , 2013, IPEC.

[21]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..