Development of dorsoventral polarity and mesentoblast determination in Patella vulgata

In Patella vulgata the 32‐cell stage represents a pause in the mitotic activity prior to the differentiation of the mesentoblast mother cell 3D. At the onset of this stage, the embryo is radially symmetrical. Nevertheless, the plane of bilateral symmetry is indicated as it passes through the macromeres forming the vegetal cross‐furrow. From the early beginning of the 32‐cell stage, all four macromeres intrude far into the interior and touch the centrally radiating cells of the first quartet of micromeres. The two cross‐furrow forming macromeres (3B and 3D) intrude the farthest and come into contact with the greatest number of micromeres. Finally, the contacts are extended significantly and maintained with only one of these macromeres. From that moment, this cell can be called the macromere 3D and the dorsoventral axis is determined. The evolution of the internal cell contacts between the micromeres of the first quartet and the macromeres indicates an essential role of the former in the determination of one of the latter as the mesentoblast mother cell, and thus in the determination of dorsoventral polarity.