Following Optogenetic Dimerizers and Quantitative Prospects.

[1]  Benjamin Lin,et al.  Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology , 2016, Science Signaling.

[2]  Brian Kuhlman,et al.  Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide. , 2016, ACS synthetic biology.

[3]  Christian Lüscher,et al.  Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases , 2015, Current Opinion in Neurobiology.

[4]  Richard S Lewis,et al.  Store-Operated Calcium Channels. , 2015, Physiological reviews.

[5]  Shinya Kuroda,et al.  An optogenetic system for interrogating the temporal dynamics of Akt , 2015, Scientific Reports.

[6]  E. Kravitz,et al.  Optogenetic Control of Gene Expression in Drosophila , 2015, PloS one.

[7]  C. Sahlgren,et al.  Genetically-encoded tools for cAMP probing and modulation in living systems , 2015, Front. Pharmacol..

[8]  Cheol‐Hee Kim,et al.  Optogenetic control of endogenous Ca2+ channels in vivo , 2015, Nature Biotechnology.

[9]  S. Takeuchi,et al.  Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS , 2015, Nature Communications.

[10]  J. Gordon,et al.  Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. , 2015, Cell reports.

[11]  Peter Hegemann,et al.  Biophysics of Channelrhodopsin. , 2015, Annual review of biophysics.

[12]  YongKeun Park,et al.  Active illumination using a digital micromirror device for quantitative phase imaging. , 2015, Optics letters.

[13]  Yuta Nihongaki,et al.  Photoactivatable CRISPR-Cas9 for optogenetic genome editing , 2015, Nature Biotechnology.

[14]  Anna Payne-Tobin Jost,et al.  Probing Yeast Polarity with Acute, Reversible, Optogenetic Inhibition of Protein Function. , 2015, ACS synthetic biology.

[15]  B. Zoltowski,et al.  LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling , 2015, Front. Mol. Biosci..

[16]  Alexander M. Walter,et al.  Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate , 2015, eLife.

[17]  U. Krämer Planting molecular functions in an ecological context with Arabidopsis thaliana , 2015, eLife.

[18]  D. Schaffer,et al.  Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering , 2015, Nature Communications.

[19]  Moritoshi Sato,et al.  CRISPR-Cas9-based photoactivatable transcription system. , 2015, Chemistry & biology.

[20]  C. Gersbach,et al.  A light-inducible CRISPR/Cas9 system for control of endogenous gene activation , 2015, Nature chemical biology.

[21]  E. Isacoff,et al.  Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. , 2015, Current opinion in pharmacology (Print).

[22]  Lukas C. Kapitein,et al.  Optogenetic control of organelle transport and positioning , 2015, Nature.

[23]  Brian Kuhlman,et al.  Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins , 2014, Proceedings of the National Academy of Sciences.

[24]  Ruqiang Liang,et al.  Monitoring activity in neural circuits with genetically encoded indicators , 2014, Front. Mol. Neurosci..

[25]  Martin Fussenegger,et al.  Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant , 2014, Nature Communications.

[26]  Justin D. Vrana,et al.  Benchmarking of Optical Dimerizer Systems , 2014, ACS synthetic biology.

[27]  F. Cailliez,et al.  ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome. , 2014, Journal of the American Chemical Society.

[28]  Justin D. Vrana,et al.  An optimized optogenetic clustering tool for probing protein interaction and function , 2014, Nature Communications.

[29]  N. Gautam,et al.  Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration , 2014, Molecular biology of the cell.

[30]  Aleksandra Klimas,et al.  Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective , 2014, Journal of biomedical optics.

[31]  R. Eils,et al.  Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells , 2014, Nature Communications.

[32]  Jessica A. Cardin,et al.  Optical neural interfaces. , 2014, Annual review of biomedical engineering.

[33]  R. Vierstra,et al.  Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome , 2014, Proceedings of the National Academy of Sciences.

[34]  P. Hegemann,et al.  Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. , 2014, Biochimica et biophysica acta.

[35]  S. Gerber,et al.  Optogenetic control of chemokine receptor signal and T-cell migration , 2014, Proceedings of the National Academy of Sciences.

[36]  Fei Chen,et al.  A fully genetically-encoded protein architecture for optical control of peptide ligand concentration , 2014, Nature Communications.

[37]  K. Gardner,et al.  An optogenetic gene expression system with rapid activation and deactivation kinetics , 2013, Nature chemical biology.

[38]  Jared E. Toettcher,et al.  Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module , 2013, Cell.

[39]  T. Nakata,et al.  Optogenetic Control of PIP3: PIP3 Is Sufficient to Induce the Actin-Based Active Part of Growth Cones and Is Regulated via Endocytosis , 2013, PloS one.

[40]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[41]  Lars-Oliver Essen,et al.  A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. , 2013, Chemistry & biology.

[42]  Michele Pagano,et al.  SCFFbxl3 Ubiquitin Ligase Targets Cryptochromes at Their Cofactor Pocket , 2013, Nature.

[43]  Robert DeRose,et al.  Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology , 2013, Pflügers Archiv - European Journal of Physiology.

[44]  Chentao Lin,et al.  Optogenetic Control of Transcription in Zebrafish , 2012, PloS one.

[45]  Michael Z. Lin,et al.  Optical Control of Protein Activity by Fluorescent Protein Domains , 2012, Science.

[46]  P. De Camilli,et al.  Optogenetic control of phosphoinositide metabolism , 2012, Proceedings of the National Academy of Sciences.

[47]  Robert DeRose,et al.  Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. , 2012, Nature chemical biology.

[48]  Leah Edelstein-Keshet,et al.  Synthetic spatially graded Rac activation drives cell polarization and movement , 2012, Proceedings of the National Academy of Sciences.

[49]  K. Moffat,et al.  Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics. , 2012, Structure.

[50]  Jason R Swedlow,et al.  Innovation in biological microscopy: Current status and future directions , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  Josiah P. Zayner,et al.  TULIPs: Tunable, light-controlled interacting protein tags for cell biology , 2012, Nature Methods.

[52]  M. Fussenegger,et al.  A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice , 2011, Science.

[53]  Nanda Keijzer,et al.  Probing intracellular motor protein activity using an inducible cargo trafficking assay. , 2010, Biophysical journal.

[54]  M. Ehlers,et al.  Rapid blue light induction of protein interactions in living cells , 2010, Nature Methods.

[55]  B. White,et al.  Chemically controlled protein assembly: techniques and applications. , 2010, Chemical reviews.

[56]  Samuel L. DeLuca,et al.  Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You , 2010, Biochemistry.

[57]  Eriko Sugano,et al.  Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. , 2010, Experimental eye research.

[58]  G. Miesenböck,et al.  The Optogenetic Catechism , 2009, Science.

[59]  Christopher A. Voigt,et al.  Spatiotemporal Control of Cell Signalling Using A Light-Switchable Protein Interaction , 2009, Nature.

[60]  B. Kuhlman,et al.  A genetically-encoded photoactivatable Rac controls the motility of living cells , 2009, Nature.

[61]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[62]  Rebecca A. Ayers,et al.  Design and signaling mechanism of light‐regulated histidine kinases , 2009, Journal of molecular biology.

[63]  Chentao Lin,et al.  Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis , 2008, Science.

[64]  Michael E. Greenberg,et al.  From Synapse to Nucleus: Calcium-Dependent Gene Transcription in the Control of Synapse Development and Function , 2008, Neuron.

[65]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[66]  Keith Moffat,et al.  N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. , 2007, Biochemistry.

[67]  Christian Eggeling,et al.  Structural basis for reversible photoswitching in Dronpa , 2007, Proceedings of the National Academy of Sciences.

[68]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[69]  Christian Eggeling,et al.  1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. , 2007, The Biochemical journal.

[70]  Tobias Meyer,et al.  Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels , 2006, Science.

[71]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[72]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[74]  S. Kay,et al.  FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis , 2003, Nature.

[75]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Kevin H. Gardner,et al.  Structural Basis of a Phototropin Light Switch , 2003, Science.

[77]  X. Deng,et al.  From seed to seed: the role of photoreceptors in Arabidopsis development. , 2003, Developmental biology.

[78]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[79]  James Q. Zheng Turning of nerve growth cones induced by localized increases in intracellular calcium ions , 2000, Nature.

[80]  C. Weitz,et al.  Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. , 1999, Science.

[81]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  P. Quail,et al.  Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light , 1999, Nature.

[83]  P. Oeller,et al.  Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. , 1997, Science.

[84]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[85]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[86]  J. Chory,et al.  The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A , 1994, Plant physiology.

[87]  Susan S. Taylor,et al.  Fluorescence ratio imaging of cyclic AMP in single cells , 1991, Nature.

[88]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[89]  M. W. Parker,et al.  A Reversible Photoreaction Controlling Seed Germination. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[90]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[91]  Meyer B. Jackson,et al.  Molecular and Cellular Biophysics: Index , 2006 .