Exponential Fourth Order Schemes for Direct Zakharov-Shabat problem

Nowadays, improving the accuracy of computational methods to solve the initial value problem of the Zakharov-Shabat system remains an urgent problem in optics. In particular, increasing the approximation order of the methods is important, especially in problems where it is necessary to analyze the structure of complex waveforms. In this work, we propose two finite-difference algorithms of fourth order of approximation in the time variable. Both schemes have the exponential form and conserve the quadratic invariant of Zakharov-Shabat system. The second scheme allows applying fast algorithms with low computational complexity (fast nonlinear Fourier transform).

[1]  Sander Wahls,et al.  Higher Order Exponential Splittings for the Fast Non-Linear Fourier Transform of the Korteweg-De Vries Equation , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Igor Chekhovskoy,et al.  Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. , 2019, Optics letters.

[3]  Sergey I. Vinitsky,et al.  A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation , 1999 .

[4]  Sander Wahls,et al.  Fast Nonlinear Fourier Transform Algorithms Using Higher Order Exponential Integrators , 2019, IEEE Access.

[5]  Alan Pak Tao Lau,et al.  Nonlinear frequency division multiplexing with b-modulation: shifting the energy barrier. , 2018, Optics express.

[6]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[7]  Vishal Vaibhav Efficient Nonlinear Fourier Transform Algorithms of Order Four on Equispaced Grid , 2019, IEEE Photonics Technology Letters.

[8]  S. Turitsyn,et al.  Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers. , 2014, Optics express.

[9]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods , 2012, IEEE Transactions on Information Theory.

[10]  Vishal Vaibhav,et al.  Higher Order Convergent Fast Nonlinear Fourier Transform , 2017, IEEE Photonics Technology Letters.

[11]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation , 2013, IEEE Transactions on Information Theory.

[12]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[13]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[14]  S. Turitsyn,et al.  Soliton content in the standard optical OFDM signal. , 2018, Optics letters.

[15]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[16]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[17]  Sergey I. Vinitsky,et al.  Magnus-factorized method for numerical solving the time-dependent Schrödinger equation , 2000 .

[18]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[19]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[20]  F. Kschischang,et al.  Bi-Directional Algorithm for Computing Discrete Spectral Amplitudes in the NFT , 2016, Journal of Lightwave Technology.

[21]  A. Osborne,et al.  Computation of the direct scattering transform for the nonlinear Schroedinger equation , 1992 .

[22]  P. Wai,et al.  High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform. , 2017, Optics express.

[23]  E. Podivilov,et al.  Efficient numerical method for solving the direct Zakharov-Shabat scattering problem , 2015 .

[24]  Mechthild Thalhammer,et al.  High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations , 2017, Comput. Phys. Commun..

[25]  Sander Wahls,et al.  FNFT: A Software Library for Computing Nonlinear Fourier Transforms , 2018, J. Open Source Softw..

[26]  Sergei K. Turitsyn,et al.  Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives , 2017, 2018 European Conference on Optical Communication (ECOC).

[27]  Explicit Magnus expansions for solving the time-dependent Schrödinger equation , 2008 .

[28]  Frank Uhlig,et al.  Numerical Algorithms with C , 1996 .

[29]  A. Vasylchenkova,et al.  Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrödinger equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[30]  Rustam Mullyadzhanov,et al.  Direct scattering transform of large wave packets. , 2019, Optics letters.

[31]  F. Grunbaum The scattering problem for a phase-modulated hyperbolic secant pulse , 1989 .

[32]  S. Burtsev,et al.  Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems , 1998 .