A Recursive Trust-Region Method for Non-Convex Constrained Minimization

The mathematical modelling of mechanical or biomechanical problems involving large deformations or biological materials often leads to highly nonlinear and constrained minimization problems. For instance, the simulation of soft-tissues, as the deformation of skin, gives rise to a highly non-linear PDE with constraints, which constitutes the first order condition for a minimizer of the corresponding non-linear energy functional. Besides of the pure deformation of the tissue, bones and muscles have a restricting effect on the deformation of the considered material, leading to additional constraints. Although PDEs are usually formulated in the context of Sobolev spaces, their numerical solution is carried out using discretizations as, e.g., finite elements. Thus, in the present work we consider the following finite dimensional constrained minimization problem: $$u \in {\rm B}: J(u) = \min !$$ (M) where \(B = \{\nu \in {\mathbb R}^n\,\, | \,\, {\underline \varphi} \leq \nu \leq {\overline \varphi} \} \) and \(\underline \varphi < {\overline \varphi} \} \,\, \in \,\, {\mathbb R}^n\) and the possibly nonconvex, but differentiable, objective function \({\bf \it J} \, : \, \mathbb R^{n} \rightarrow \mathbb R. \). Here, the occurring inequalities are to be understood pointwise. In the context of discretized PDEs, n corresponds to the dimension of the finite element space and may therefore be very large.

[1]  Sergio Albeverio,et al.  Factorisation of Non-negative Fredholm Operators and Inverse Spectral Problems for Bessel Operators , 2009 .

[2]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[3]  P. Toint,et al.  A recursive ℓ∞-trust-region method for bound-constrained nonlinear optimization , 2008 .

[4]  Leonid Bogachev,et al.  Poisson Cluster Measures: Quasi-invariance, Integration by Parts and Equilibrium Stochastic Dynamics , 2008, 0803.4496.

[5]  Erez Lapid,et al.  SPECTRAL ASYMPTOTICS FOR ARITHMETIC QUOTIENTS OF SL(n,R)/SO(n) , 2007, 0711.2925.

[6]  Nikolaus Schweizer,et al.  Spectral Gaps of Simulated Tempering for Bimodal Distributions , 2008 .

[7]  Hanno Gottschalk,et al.  A Comment on the Infra-Red Problem in the AdS/CFT Correspondence , 2007 .

[8]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .

[9]  M. Griebel,et al.  Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions , 2009 .

[10]  Christian Gross,et al.  On the Convergence of Recursive Trust-Region Methods for Multiscale Nonlinear Optimization and Applications to Nonlinear Mechanics , 2009, SIAM J. Numer. Anal..

[11]  P. Toint,et al.  A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization , 2007 .

[12]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[13]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[14]  Ross T. Whitaker,et al.  Finite Element Methods on Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces , 2009, SIAM J. Sci. Comput..

[15]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[16]  Serge Gratton,et al.  Recursive Trust-Region Methods for Multiscale Nonlinear Optimization , 2008, SIAM J. Optim..

[17]  E. Gelman,et al.  On multilevel iterative methods for optimization problems , 1990, Math. Program..

[18]  Sergio Albeverio,et al.  Synchronizability of stochastic network ensembles in a model of interacting dynamical units , 2007 .

[19]  Michael Griebel,et al.  A multigrid method for constrained optimal control problems , 2011, J. Comput. Appl. Math..

[20]  Felix Otto,et al.  Optimal bounds on the Kuramoto–Sivashinsky equation , 2009 .

[21]  Michael Griebel,et al.  Homogenization and Numerical Simulation of Flow in Geometries with Textile Microstructures , 2010, Multiscale Model. Simul..

[22]  S. Nash A multigrid approach to discretized optimization problems , 2000 .

[23]  Wolfgang Alt,et al.  Rheinisch-westfälische Technische Hochschule Aachen Energetics and Dynamics of Global Integrals Modeling Interaction between Stiff Filaments Energetics and Dynamics of Global Integrals Modeling Interaction between Stiff Filaments , 2022 .

[24]  Tobias Finis,et al.  The spectral side of Arthur's trace formula , 2009, Proceedings of the National Academy of Sciences.

[25]  Michael Griebel,et al.  Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..

[26]  Michael Griebel,et al.  The BGY3dM model for the approximation of solvent densities. , 2008, The Journal of chemical physics.

[27]  Rolf Krause,et al.  Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .