D S ] 2 2 O ct 2 00 4 Optimal Free-Space Management and Routing-Conscious Dynamic Placement for Reconfigurable Computers ∗

We describe algorithmic results on two crucial aspects of allocating resources on array-based hardware devices with partial reconfigurability. By using methods from the field of computational geometry, we derive a method that allows correct maintainance of free and occupied space of a set of n rectangular modules in time O(n log n); previous approaches needed a time of O(n) for correct results and O(n) for heuristic results. We also show a matching lower bound of Ω(n log n), so our approach is optimal. We also show that finding an optimal feasible communicationconscious placement (which minimizes the total weighted Manhattan distance between the new module and existing demand points) can be computed with Θ(n log n). Both resulting algorithms are practically easy to implement and show convincing experimental behavior. ACM Classification: C.1.3: Reconfigurable Hardware; F.2.2.c: Geometrical problems and computations

[1]  Cynthia A. Phillips,et al.  Communication-Aware Processor Allocation for Supercomputers , 2005, WADS.

[2]  Jens Mache,et al.  Dispersal Metrics for Non-Contiguous Processor Allocation , 1996 .

[3]  Joseph S. B. Mitchell,et al.  An Algorithmic Approach to Some Problems in Terrain Navigation , 1988, Artif. Intell..

[4]  Madhav V. Marathe,et al.  Compact Location Problems , 1993, Theor. Comput. Sci..

[5]  Ralf Hartmut Güting,et al.  An Optimal Contour Algorithm for Iso-Oriented Rectangles , 1984, J. Algorithms.

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[8]  Franco P. Preparata,et al.  Finding the Contour of a Union of Iso-Oriented Rectangles , 1980, J. Algorithms.

[9]  Jürgen Becker,et al.  Dynamic Adaptive Runtime Routing Techniques in Multigrain Reconfigurable Hardware Architectures , 2004, FPL.

[10]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[11]  Sariel Har-Peled,et al.  Polygon-containment and translational min-Hausdorff-distance between segment sets are 3SUM-hard , 2001, SODA '99.

[12]  Hortensia Mecha,et al.  A Low Fragmentation Heuristic for Task Placement in 2D RTR HW Management , 2004, FPL.

[13]  Majid Sarrafzadeh,et al.  Fast Template Placement for Reconfigurable Computing Systems , 2000, IEEE Des. Test Comput..

[14]  Manuel Blum,et al.  Linear time bounds for median computations , 1972, STOC.

[15]  Jürgen Teich,et al.  A Dynamic NoC Approach for Communication in Reconfigurable Devices , 2004, FPL.

[16]  Jürgen Teich,et al.  A new approach for on-line placement on reconfigurable devices , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[17]  Hortensia Mecha,et al.  A vertex-list approach to 2D HW multitasking management in RTR FPGAs , 2003 .

[18]  Marco Platzner,et al.  Fast online task placement on FPGAs: free space partitioning and 2D-hashing , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[19]  D. Kearney,et al.  The first real operating system for reconfigurable computers , 2001, Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001.

[20]  C. K. Wong,et al.  Near-Optimal Solutions to a 2-Dimensional Placement Problem , 1975, SIAM J. Comput..

[21]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[22]  Jens Mache,et al.  The Effects of Dispersal on Message-Passing Contention in Processor Allocation Strategies , 1997 .

[23]  Derick Wood,et al.  An Optimal Worst Case Algorithm for Reporting Intersections of Rectangles , 1980, IEEE Transactions on Computers.