Technologies ranking in the presence of both cardinal and ordinal data

Ranking of technologies is an important phase for technology transfer. To rank the best technologies in the presence of both cardinal and ordinal data, this paper proposes an innovative approach, which is based on imprecise data envelopment analysis (IDEA). The objective of this paper is to propose a comprehensive reference that discusses the use of IDEA in technology ranking. A numerical example demonstrates the application of the proposed method.

[1]  Nicole Adler,et al.  Measuring airport quality from the airlines' viewpoint: an application of data envelopment analysis , 2001 .

[2]  Saati,et al.  A MODEL FOR RANKING DECISION MAKING UNITS IN DATA ENVELOPMENT ANALYSIS , 1999 .

[3]  Ram Rachamadugu,et al.  A closer look at the use of data envelopment analysis for technology selection , 1997 .

[4]  Jian-Bo Yang,et al.  Interval efficiency assessment using data envelopment analysis , 2005, Fuzzy Sets Syst..

[5]  Reza Farzipoor Saen,et al.  The effect of correlation coefficient among multiple input vectors on the efficiency mean in data envelopment analysis , 2005, Appl. Math. Comput..

[6]  F. Hosseinzadeh Lotfi,et al.  Sensitivity and stability analysis in DEA with interval data , 2004, Appl. Math. Comput..

[7]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[8]  Soung Hie Kim,et al.  An application of data envelopment analysis in telephone offices evaluation with partial data , 1999, Comput. Oper. Res..

[9]  Gholam Reza Jahanshahloo,et al.  A ranking method based on a full-inefficient frontier , 2006 .

[10]  Zilla Sinuany-Stern,et al.  Scaling units via the canonical correlation analysis in the DEA context , 1997, Eur. J. Oper. Res..

[11]  F. Hosseinzadeh Lotfi,et al.  A note on some of DEA models and finding efficiency and complete ranking using common set of weights , 2005, Appl. Math. Comput..

[12]  F. Liu,et al.  The voting analytic hierarchy process method for selecting supplier , 2005 .

[13]  Soung Hie Kim,et al.  Identification of inefficiencies in an additive model based IDEA (imprecise data envelopment analysis) , 2002, Comput. Oper. Res..

[14]  Mustafa Yurdakul,et al.  Selection of computer-integrated manufacturing technologies using a combined analytic hierarchy process and goal programming model , 2004 .

[15]  Dimitris K. Despotis,et al.  Data envelopment analysis with imprecise data , 2002, Eur. J. Oper. Res..

[16]  Joe Zhu,et al.  Imprecise DEA via Standard Linear DEA Models with a Revisit to a Korean Mobile Telecommunication Company , 2004, Oper. Res..

[17]  Shouhong Wang Comments on operational competitiveness rating analysis (OCRA) , 2006, Eur. J. Oper. Res..

[18]  Reza Farzipoor Saen,et al.  A decision model for technology selection in the existence of both cardinal and ordinal data , 2006, Appl. Math. Comput..

[19]  Chiang Kao,et al.  Interval efficiency measures in data envelopment analysis with imprecise data , 2006, Eur. J. Oper. Res..

[20]  Gholam Reza Jahanshahloo,et al.  On FDH efficiency analysis with interval data , 2004, Appl. Math. Comput..

[21]  Gang Yu,et al.  An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company , 2001, Oper. Res..

[22]  Alireza Amirteimoori,et al.  Ranking of decision making units in data envelopment analysis: A distance-based approach , 2005, Appl. Math. Comput..

[23]  F. Førsund,et al.  Slack-adjusted efficiency measures and ranking of efficient units , 1996 .

[24]  Srinivas Talluri,et al.  A nonparametric stochastic procedure for FMS evaluation , 2000, Eur. J. Oper. Res..

[25]  Joe Zhu,et al.  Imprecise data envelopment analysis (IDEA): A review and improvement with an application , 2003, Eur. J. Oper. Res..

[26]  R M Thrall,et al.  DUALITY CLASSIFICATION AND SLACKS IN DATA ENVELOPMENT ANALYSIS , 1996 .

[27]  Joseph Sarkis,et al.  A decision model for evaluation of flexible manufacturing systems in the presence of both cardinal and ordinal factors , 1999 .

[28]  Moutaz Khouja,et al.  The use of data envelopment analysis for technology selection , 1995 .

[29]  Reza Farzipoor Saen,et al.  Technologies Ranking by Super-Efficiency Analysis , 2006 .

[30]  Abdollah Hadi-Vencheh,et al.  On return to scale of fully efficient DMUs in data envelopment analysis under interval data , 2004, Appl. Math. Comput..

[31]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[32]  Shabnam Razavyan,et al.  Ranking using l1-norm in data envelopment analysis , 2004, Appl. Math. Comput..

[33]  M. Zarepisheh,et al.  Modified MAJ model for ranking decision making units in data envelopment analysis , 2006, Appl. Math. Comput..

[34]  Joe Zhu,et al.  Efficiency evaluation with strong ordinal input and output measures , 2003, Eur. J. Oper. Res..

[35]  Joe Zhu,et al.  Rank order data in DEA: A general framework , 2006, Eur. J. Oper. Res..

[36]  P. Andersen,et al.  A procedure for ranking efficient units in data envelopment analysis , 1993 .

[37]  L. Seiford,et al.  Data Envelopment Analysis in the Presence of Both Quantitative and Qualitative Factors , 1996 .

[38]  Celik Parkan,et al.  Decision-making and performance measurement models with applications to robot selection , 1999 .

[39]  Robert M. Thrall,et al.  Chapter 5 Duality, classification and slacks in DEA , 1996, Ann. Oper. Res..

[40]  Esmaile Khorram,et al.  The maximum and minimum number of efficient units in DEA with interval data , 2005, Appl. Math. Comput..

[41]  F. Hosseinzadeh Lotfi,et al.  Using Monte Carlo method for ranking efficient DMUs , 2005, Appl. Math. Comput..

[42]  William W. CooperKyung IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA , 1999 .

[43]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[44]  Gholam Reza Jahanshahloo,et al.  A Complete Efficiency Ranking of Decision Making Units in Data Envelopment Analysis , 1999, Comput. Optim. Appl..