To the understanding of the formation of the III-V based droplet epitxial nanorings

Abstract The paper deals with the kinetics of the droplet epitaxial GaAs quantum ring formation grown on AlGaAs (0 0 1) surface. The observation is, that the aspect ratio of these nano structures is depends not only on the technological parameters but on the size of the initial droplet. Under appropriate growth conditions, the depressions, in the middle of the rings are deeper than the surface level of the substrate. A large number of tests show, that the depressions in the middle of the small rings are often deeper than that of the larger ones. The number is larger, than just statistical fluctuation. An explanation for this phenomenon and its kinetics are given in the paper, based on the size dependence of the material properties, like for instance solubility. The plausible explanation assumes is that the probability of the crystal seed formation in the larger droplets is higher.

[1]  T. Mano,et al.  Nanometer-scale GaAs ring structure grown by droplet epitaxy , 2005 .

[2]  G. Kido,et al.  Lasing in GaAs∕AlGaAs self-assembled quantum dots , 2006 .

[3]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[4]  Andreas Schramm,et al.  The RHEED tracking of the droplet epitaxial grown quantum dot and ring structures , 2009 .

[5]  J. S. Kim,et al.  Near room temperature droplet epitaxy for fabrication of InAs quantum dots , 2004 .

[6]  A. Schramm,et al.  Composition of the “GaAs” quantum dot, grown by droplet epitaxy , 2010 .

[7]  H. Fujioka,et al.  Indium segregation in the fabrication of InGaAs concave disks by heterogeneous droplet epitaxy , 2001 .

[8]  P. Couchman The Lindemann hypothesis and the size dependence of melting temperatures. II , 1978 .

[9]  J. Tersoff,et al.  Competing relaxation mechanisms in strained layers. , 1994, Physical review letters.

[10]  V. Skripov,et al.  Size effect on melting of small particles , 1981 .

[11]  Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles , 2006, cond-mat/0612562.

[12]  M. Zinke–Allmang,et al.  SELF-SIMILAR SPATIAL ORDERING OF CLUSTERS ON SURFACES DURING OSTWALD RIPENING , 1997 .

[13]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[14]  G. Satunkin Determination of growth angles, wetting angles, interfacial tensions and capillary constant values of melts , 2003 .

[15]  C. Wronski The size dependence of the melting point of small particles of tin , 1967 .

[16]  Kazuaki Sakoda,et al.  Self-assembly of concentric quantum double rings. , 2005, Nano letters.

[17]  Baoquan Sun,et al.  Formation of GaAs∕AlGaAs and InGaAs∕GaAs nanorings by droplet molecular-beam epitaxy , 2005 .

[18]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[19]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[20]  Toshiki Sugai,et al.  Hot and solid gallium clusters: too small to melt. , 2003, Physical review letters.

[21]  Laszlo Dobos,et al.  Facetting of the self-assembled droplet epitaxial GaAs quantum dot , 2011, Microelectron. Reliab..

[22]  J. Damiano,et al.  Size Effects on the Melting Temperature of Silver Nanoparticles: In-Situ TEM Observations , 2009, Microscopy and Microanalysis.

[23]  Shiro Tsukamoto,et al.  New Self-Organized Growth Method for InGaAs Quantum Dots on GaAs(001) Using Droplet Epitaxy , 1999 .

[24]  Z. Barber,et al.  Modelling the size effect on the melting temperature of nanoparticles, nanowires and nanofilms , 2007 .

[25]  Zhichuan Niu,et al.  Complex quantum ring structures formed by droplet epitaxy , 2006 .

[26]  R. Lowe-Webb,et al.  Strain and electronic structure of self-organized InAs/GaAs quantum dots bounded by 136 facets , 2000 .

[27]  Do-Hyun Kim,et al.  Growth of InAs nanocrystals on GaAs(100) by droplet epitaxy , 2000 .

[28]  Sindee L. Simon,et al.  The melting behavior of aluminum nanoparticles , 2007 .

[29]  E. Lendvay,et al.  LPE growth of GaAs-GaAlAs superlattices , 1985 .

[30]  Kavita Joshi,et al.  Why do gallium clusters have a higher melting point than the bulk? , 2004, Physical review letters.

[31]  C. Hock,et al.  Melting-point depression by insoluble impurities: a finite size effect. , 2008, Physical review letters.

[32]  Feldman,et al.  Experimental study of self-similarity in the coalescence growth regime. , 1992, Physical review letters.

[33]  Chang Q. Sun,et al.  Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom , 2002 .

[34]  A. Schramm,et al.  Regimes of GaAs quantum dot self-assembly by droplet epitaxy , 2007 .

[35]  Weinberg,et al.  Island scaling in strained heteroepitaxy: InAs/GaAs(001). , 1995, Physical review letters.

[36]  G. Springholz,et al.  Oswald ripening and shape transitions of self-assembled PbSe quantum dots on PbTe (111) during annealing , 2000 .

[37]  S. Sanguinetti,et al.  Optical transitions in quantum ring complexes , 2005, cond-mat/0509625.

[38]  T. Wisleder,et al.  Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements , 2000 .