On the Error Performance of Systematic Polar Codes

Systematic polar codes are shown to outperform non-systematic polar codes in terms of the bit-error-rate (BER) performance. However theoretically the mechanism behind the better performance of systematic polar codes is not yet clear. In this paper, we set the theoretical framework to analyze the performance of systematic polar codes. The exact evaluation of the BER of systematic polar codes conditioned on the BER of non-systematic polar codes involves in $2^{NR}$ terms where $N$ is the code block length and $R$ is the code rate, resulting in a prohibitive number of computations for large block lengths. By analyzing the polar code construction and the successive-cancellation (SC) decoding process, we use a statistical model to quantify the advantage of systematic polar codes over non-systematic polar codes, so called the systematic gain in this paper. A composite model is proposed to approximate the dominant error cases in the SC decoding process. This composite model divides the errors into independent regions and coupled regions, controlled by a coupling coefficient. Based on this model, the systematic gain can be conveniently calculated. Numerical simulations are provided in the paper showing very close approximations of the proposed model in quantifying the systematic gain.

[1]  E. Arkan,et al.  A performance comparison of polar codes and Reed-Muller codes , 2008, IEEE Communications Letters.

[2]  Rüdiger L. Urbanke,et al.  On the scaling of polar codes: I. The behavior of polarized channels , 2010, 2010 IEEE International Symposium on Information Theory.

[3]  John R. Barry,et al.  Polar codes for partial response channels , 2013, 2013 IEEE International Conference on Communications (ICC).

[4]  Toshiyuki Tanaka,et al.  Rate-Dependent Analysis of the Asymptotic Behavior of Channel Polarization , 2011, IEEE Transactions on Information Theory.

[5]  Aria Ghasemian Sahebi,et al.  Multilevel polarization of polar codes over arbitrary discrete memoryless channels , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[6]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[7]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[8]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[9]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[10]  Toshiyuki Tanaka,et al.  Refined rate of channel polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  Hossein Pishro-Nik,et al.  A practical approach to polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[12]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[13]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[14]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[15]  Rüdiger L. Urbanke,et al.  Polar codes: Characterization of exponent, bounds, and constructions , 2009, 2009 IEEE International Symposium on Information Theory.

[16]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[17]  Erdal Arikan,et al.  Systematic Polar Coding , 2011, IEEE Communications Letters.

[18]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[19]  H. Pishro-Nik,et al.  On bit error rate performance of polar codes in finite regime , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[20]  Kai Chen,et al.  Improved Successive Cancellation Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[21]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[22]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[23]  Emre Telatar,et al.  On the construction of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[24]  Emre Telatar,et al.  MAC polar codes and matroids , 2010, 2010 Information Theory and Applications Workshop (ITA).

[25]  Toshiyuki Tanaka,et al.  Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes , 2010, 2010 IEEE Information Theory Workshop.

[26]  Paul H. Siegel,et al.  Enhanced belief propagation decoding of polar codes through concatenation , 2014, 2014 IEEE International Symposium on Information Theory.

[27]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.