Pre-silicon Embedded System Evaluation as New EDA Tool for Security Verification

The security evaluation of embedded systems becomes clear and mandatory. Up today, the evaluation process is limited to certification labs that conduct the analysis on real target devices. This requires appropriate measurement platforms and equipment in addition to real chip analysis skills. In this paper, we put forward a pre-silicon evaluation methodology and tools that allow the security verification at an early stage (virtual target) and running it hands in hands with the functional verification. As of today, such approach can be used as new Electronic Design Automation (EDA) tool to properly satisfy the basics of Design for Security (DFS) concept. From a practical viewpoint, we show a study case to illustrate and provide a better understanding of that approach. Moreover, we propose new evaluation metrics based on Signal to Noise Ratio (SNR) computation, and verified on virtual and real targets respectively based on a comparative study. Likewise, the tool identifies vulnerabilites (thereby anticipating complete families of otherwise numerous, complex and many undiscovered attacks), and returns accurate feedack to the user on the precise line of code (LoC) where the vulnerability lays along with its characterization, including an identification of its severity. This allows the design to input source code to the tool, and to get back in return annotated source code with a collection of LoCs which deserve careful analysis and/or subsequent modification aiming at patching vulnerabilities.