Breakdown probabilities for thin heterostructure avalanche photodiodes

The recurrence theory for the breakdown probability in avalanche photodiodes (APDs) is generalized to heterostructure APDs that may have multiple multiplication layers. The generalization addresses layer-boundary effects such as the initial energy of injected carriers as well as the layer-dependent profile of the dead space in the multiplication region. Reducing the width of the multiplication layer serves to both downshift and sharpen the breakdown probability curve as a function of the applied reverse-bias voltage. In structures where the injected carriers have an initial energy that is comparable to the ionization threshold energy, the transition from linear mode to Geiger-mode is more abrupt than in structures in which such initial energy is negligible. The theory is applied to two recently fabricated Al/sub 0.6/Ga/sub 0.4/As-GaAs heterostructure APDs and to other homostructure thin GaAs APDs and the predictions of the breakdown-voltage thresholds are verified.

[1]  R. C. Tozer,et al.  Low multiplication noise thin Al/sub 0.6/Ga/sub 0.4/As avalanche photodiodes , 2001 .

[2]  Chee Hing Tan,et al.  Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes , 2001 .

[3]  K. Brennan,et al.  Experimental determination of impact ionization coefficients in , 1983, IEEE Electron Device Letters.

[4]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[5]  C. Hu,et al.  A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .

[6]  Bahaa E. A. Saleh,et al.  Breakdown voltage in thin III–V avalanche photodiodes , 2001 .

[7]  Bahaa E. A. Saleh,et al.  Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes: theory and experiment [Al/sub 0.6/Ga/sub 0.4/As/GaAs] , 2002 .

[8]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[9]  J.C. Campbell,et al.  Avalanche photodiodes with an impact-ionization-engineered multiplication region , 2000, IEEE Photonics Technology Letters.

[10]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes , 1992 .

[11]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[12]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[13]  IEEE Journal of Quantum Electronics , 2022 .

[14]  Bahaa E. A. Saleh,et al.  Gain-bandwidth characteristics of thin avalanche photodiodes , 2002 .

[15]  J.C. Campbell,et al.  Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses , 2000, IEEE Journal of Quantum Electronics.

[16]  X. Li,et al.  Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region , 2001, IEEE Photonics Technology Letters.

[17]  Bahaa E. A. Saleh,et al.  Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes , 2000 .

[18]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .