Relevance of classical chaos in quantum mechanics: The hydrogen atom in a monochromatic field

Abstract We present analytical and numerical results on the mechanism of excitation and ionization of hydrogen atoms under microwave fields. In particular we predict the existence of a critical value of the microwave field, the quantum delocalization border , above which the quantum packet delocalizes and strong excitation and ionization takes place. Below the quantum border, the packet is localized even though the corresponding classical system can be chaotic and obeys a diffusion equation. Our studies reveal some other unexpected new features of quantum dynamics which also could be observed in laboratory experiments and provides a quantum theory for subthreshold ionization.

[1]  R. Jensen Stochastic ionization of surface-state electrons: Classical theory , 1984 .

[2]  Shepelyansky,et al.  New photoelectric ionization peak in the hydrogen atom. , 1986, Physical review letters.

[3]  Sundaram,et al.  Quantum dynamics for driven weakly bound electrons near the threshold for classical chaos. , 1986, Physical review letters.

[4]  N. B. Delone,et al.  Highly-excited atoms in the electromagnetic field , 1983 .

[5]  B. Chirikov,et al.  Quantum Limitations for Chaotic Excitation of the Hydrogen Atom in a Monochromatic Field , 1984 .

[6]  D. Grempel,et al.  Chaos, Quantum Recurrences, and Anderson Localization , 1982 .

[7]  U. Smilansky,et al.  Quantum mechanical suppression of classical stochasticity in the dynamics of periodically perturbed surface-state electrons , 1984 .

[8]  B. Huberman,et al.  Recurrence Phenomena in Quantum Dynamics , 1982 .

[9]  R. Jensen Stochastic Ionization of Surface-State Electrons , 1982 .

[10]  P. Koch,et al.  Multiphoton ionization of highly excited hydrogen atoms , 1974 .

[11]  Jensen Rv Stochastic ionization of electrically polarized, hydrogen Rydberg atoms. , 1985 .

[12]  Meschede,et al.  One-atom maser. , 1985, Physical review letters.

[13]  D. Shepelyansky,et al.  Localization of quasienergy eigenfunctions in action space. , 1986, Physical review letters.

[14]  Rath,et al.  Microwave ionization of hydrogen atoms: Experiment vs classical dynamics. , 1985, Physical review letters.

[15]  J. Leopold,et al.  The effect of a combined static and microwave field on an excited hydrogen atom , 1987 .

[16]  I. Percival,et al.  Microwave Ionization and Excitation of Rydberg Atoms , 1978 .

[17]  L. Gardner,et al.  Observation of resonances in the microwave-stimulated multiphoton excitation and ionization of highly excited hydrogen atoms , 1977 .

[18]  U. Smilansky,et al.  Suppression of classical stochasticity by quantum-mechanical effects in the dynamics of periodically perturbed surface-state electrons , 1984 .

[19]  J. Leopold,et al.  The effect of a resonant electric field on a one-dimensional classical hydrogen atom , 1985 .

[20]  I. Percival,et al.  Ionisation of highly excited atoms by electric fields. IV. Frequency and amplitude dependence for linearly polarised fields , 1980 .

[21]  Pinnaduwage,et al.  Diffusionlike aspects of multiphoton absorption in electrically polarized highly excited hydrogen atoms. , 1985, Physical review letters.

[22]  Sundaram,et al.  Microwave absorption by hydrogen atoms in high Rydberg states. , 1985, Physical review. A, General physics.

[23]  Joseph H. Eberly,et al.  Effect of coherent continuum-continuum relaxation and saturation in multiphoton ionization , 1984 .

[24]  A. Messiah Quantum Mechanics , 1961 .

[25]  D. Grempel,et al.  Quantum dynamics of a nonintegrable system , 1984 .

[26]  I. Percival,et al.  Ionisation of highly excited atoms by electric fields. III. Microwave ionisation and excitation , 1979 .

[27]  Shepelyansky,et al.  Dynamical stability of quantum "chaotic" motion in a hydrogen atom. , 1986, Physical review letters.

[28]  H. Muller,et al.  Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm , 1983 .

[29]  G. Petite,et al.  Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06?m , 1982 .

[30]  Smilansky,et al.  Ionization of surface-state electrons by microwave fields: Quantum treatment. , 1985, Physical review. A, General physics.