PRESBURGER ARITHMETIC, RATIONAL GENERATING FUNCTIONS, AND QUASI-POLYNOMIALS

Presburger arithmetic is the first-order theory of the natural numbers with addition (but no multiplication). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, if p=(p_1,...,p_n) are a subset of the free variables in a Presburger formula, we can define a counting function g(p) to be the number of solutions to the formula, for a given p. We show that every counting function obtained in this way may be represented as, equivalently, either a piecewise quasi-polynomial or a rational generating function. Finally, we translate known computational complexity results into this setting and discuss open directions.

[1]  Michael A. Ivanov Diophantine equations , 2004 .

[2]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[3]  Richard P. Stanley,et al.  Decompositions of Rational Convex Polytopes , 1980 .

[4]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[5]  Bernd Sturmfels,et al.  Computing the integer programming gap , 2007, Comb..

[6]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[7]  Ravi Kannan Test Sets for Integer Programs, 0_ Sentences , 1990, Polyhedral Combinatorics.

[8]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[9]  Matthias Beck The Partial-Fractions Method for Counting Solutions to Integral Linear Systems , 2004, Discret. Comput. Geom..

[10]  Alexander Barvinok,et al.  The complexity of generating functions for integer points in polyhedra and beyond , 2006 .

[11]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[12]  Alan Cobham,et al.  On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.

[13]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[14]  Martin Fürer,et al.  The Complexity of Presburger Arithmetic with Bounded Quantifier Alternation Depth , 1982, Theor. Comput. Sci..

[15]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[16]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[17]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[18]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[19]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[20]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[21]  Imre Brny LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) By JI MATOUEK: 481 pp., 31.50 (US$39.95), ISBN 0-387-95374-4 (Springer, New York, 2002). , 2003 .

[22]  Martin D. Davis Hilbert's Tenth Problem is Unsolvable , 1973 .

[23]  D. Hilbert Mathematical Problems , 2019, Mathematics: People · Problems · Results.

[24]  Bernd Sturmfels,et al.  On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.

[25]  Rekha R. Thomas The Structure of Group Relaxations , 2005 .

[26]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[27]  Ezra Miller,et al.  Lattice point methods for combinatorial games , 2009, Adv. Appl. Math..

[28]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[29]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[30]  Benedetto Intrigila,et al.  Quasi-polynomials, linear Diophantine equations and semi-linear sets , 2012, Theor. Comput. Sci..

[31]  William Pugh,et al.  Counting solutions to Presburger formulas: how and why , 1994, PLDI '94.

[32]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[33]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[34]  Christoph Haase,et al.  Subclasses of presburger arithmetic and the weak EXP hierarchy , 2014, CSL-LICS.

[35]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[36]  Rekha R. Thomas A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..

[37]  Uwe Schöning Complexity of Presburger Arithmetic with Fixed Quantifier Dimension , 1997, Theory Comput. Syst..

[38]  Robert Weismantel,et al.  Test sets of integer programs , 1998, Math. Methods Oper. Res..

[39]  Donald W. Loveland,et al.  Presburger arithmetic with bounded quantifier alternation , 1978, STOC.

[40]  Y. O. Hamidoune,et al.  The Diophantine Frobenius Problem , 2006 .

[41]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[42]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[43]  Vincent Loechner,et al.  Parametric Analysis of Polyhedral Iteration Spaces , 1998, J. VLSI Signal Process..

[44]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[45]  Benedetto Intrigila,et al.  On some counting problems for semi-linear sets , 2009, ArXiv.

[46]  W. Fulton Introduction to Toric Varieties. , 1993 .

[47]  Erich Grädel Subclasses of Presburger Arithmetic and the Polynomial-Time Hierarchy , 1988, Theor. Comput. Sci..

[48]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[49]  Erich Grädel,et al.  Dominoes and the Complexity of Subclasses of Logical Theories , 1989, Ann. Pure Appl. Log..

[50]  Justo Puerto,et al.  Counting numerical Semigroups with Short Generating Functions , 2011, Int. J. Algebra Comput..

[51]  Mojżesz Presburger,et al.  On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation , 1991 .

[52]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[53]  Hubert Comon-Lundh,et al.  Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.

[54]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[55]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[56]  Jesús A. De Loera,et al.  Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..

[57]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[58]  Sven Verdoolaege,et al.  Counting with rational generating functions , 2008, J. Symb. Comput..

[59]  Derek C. Oppen,et al.  A 2^2^2^pn Upper Bound on the Complexity of Presburger Arithmetic , 1978, J. Comput. Syst. Sci..

[60]  Felix Klaedtke Bounds on the automata size for Presburger arithmetic , 2008, TOCL.

[61]  Siddhartha Chatterjee,et al.  An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas , 2004, CC.

[62]  B. Scarpellini Complexity of subcases of Presburger arithmetic , 1984 .

[63]  Kevin Woods,et al.  Rational generating functions and lattice point sets. , 2004 .

[64]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .