PRESBURGER ARITHMETIC, RATIONAL GENERATING FUNCTIONS, AND QUASI-POLYNOMIALS
暂无分享,去创建一个
[1] Michael A. Ivanov. Diophantine equations , 2004 .
[2] Pierre Wolper,et al. An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.
[3] Richard P. Stanley,et al. Decompositions of Rational Convex Polytopes , 1980 .
[4] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[5] Bernd Sturmfels,et al. Computing the integer programming gap , 2007, Comb..
[6] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[7] Ravi Kannan. Test Sets for Integer Programs, 0_ Sentences , 1990, Polyhedral Combinatorics.
[8] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[9] Matthias Beck. The Partial-Fractions Method for Counting Solutions to Integral Linear Systems , 2004, Discret. Comput. Geom..
[10] Alexander Barvinok,et al. The complexity of generating functions for integer points in polyhedra and beyond , 2006 .
[11] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[12] Alan Cobham,et al. On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.
[13] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[14] Martin Fürer,et al. The Complexity of Presburger Arithmetic with Bounded Quantifier Alternation Depth , 1982, Theor. Comput. Sci..
[15] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[16] H. P. Williams. THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .
[17] Hubert Comon-Lundh,et al. Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.
[18] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[19] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[20] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[21] Imre Brny. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) By JI MATOUEK: 481 pp., 31.50 (US$39.95), ISBN 0-387-95374-4 (Springer, New York, 2002). , 2003 .
[22] Martin D. Davis. Hilbert's Tenth Problem is Unsolvable , 1973 .
[23] D. Hilbert. Mathematical Problems , 2019, Mathematics: People · Problems · Results.
[24] Bernd Sturmfels,et al. On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.
[25] Rekha R. Thomas. The Structure of Group Relaxations , 2005 .
[26] S. Robins,et al. Computing the Continuous Discretely , 2015 .
[27] Ezra Miller,et al. Lattice point methods for combinatorial games , 2009, Adv. Appl. Math..
[28] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[29] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[30] Benedetto Intrigila,et al. Quasi-polynomials, linear Diophantine equations and semi-linear sets , 2012, Theor. Comput. Sci..
[31] William Pugh,et al. Counting solutions to Presburger formulas: how and why , 1994, PLDI '94.
[32] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[33] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[34] Christoph Haase,et al. Subclasses of presburger arithmetic and the weak EXP hierarchy , 2014, CSL-LICS.
[35] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[36] Rekha R. Thomas. A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..
[37] Uwe Schöning. Complexity of Presburger Arithmetic with Fixed Quantifier Dimension , 1997, Theory Comput. Syst..
[38] Robert Weismantel,et al. Test sets of integer programs , 1998, Math. Methods Oper. Res..
[39] Donald W. Loveland,et al. Presburger arithmetic with bounded quantifier alternation , 1978, STOC.
[40] Y. O. Hamidoune,et al. The Diophantine Frobenius Problem , 2006 .
[41] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[42] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[43] Vincent Loechner,et al. Parametric Analysis of Polyhedral Iteration Spaces , 1998, J. VLSI Signal Process..
[44] William Fulton,et al. Introduction to Toric Varieties. (AM-131) , 1993 .
[45] Benedetto Intrigila,et al. On some counting problems for semi-linear sets , 2009, ArXiv.
[46] W. Fulton. Introduction to Toric Varieties. , 1993 .
[47] Erich Grädel. Subclasses of Presburger Arithmetic and the Polynomial-Time Hierarchy , 1988, Theor. Comput. Sci..
[48] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[49] Erich Grädel,et al. Dominoes and the Complexity of Subclasses of Logical Theories , 1989, Ann. Pure Appl. Log..
[50] Justo Puerto,et al. Counting numerical Semigroups with Short Generating Functions , 2011, Int. J. Algebra Comput..
[51] Mojżesz Presburger,et al. On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation , 1991 .
[52] Ramírez Alfonsin,et al. The diophantine frobenius problem , 2005 .
[53] Hubert Comon-Lundh,et al. Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.
[54] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[55] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[56] Jesús A. De Loera,et al. Short rational functions for toric algebra and applications , 2004, J. Symb. Comput..
[57] A. Schrijver. A Course in Combinatorial Optimization , 1990 .
[58] Sven Verdoolaege,et al. Counting with rational generating functions , 2008, J. Symb. Comput..
[59] Derek C. Oppen,et al. A 2^2^2^pn Upper Bound on the Complexity of Presburger Arithmetic , 1978, J. Comput. Syst. Sci..
[60] Felix Klaedtke. Bounds on the automata size for Presburger arithmetic , 2008, TOCL.
[61] Siddhartha Chatterjee,et al. An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas , 2004, CC.
[62] B. Scarpellini. Complexity of subcases of Presburger arithmetic , 1984 .
[63] Kevin Woods,et al. Rational generating functions and lattice point sets. , 2004 .
[64] J. Ferrante,et al. The computational complexity of logical theories , 1979 .