Corrigendum: On Bayesian analysis of mixtures with an unknown number of components

We regret to report that there is an error in equation (12) on p. 740, concerning the birth± death move for empty components. The correct expression is A ˆ p…k‡ 1† p…k† 1 B…k , † w y1 j* …1y wj*† yk…k‡ 1† dk‡1 …k0 ‡ 1†bk 1 g1,k…wj*† …1y wj*†: In the paper as printed, the power of 1y wj* in the ®nal factor, the Jacobian term, was given as k instead of ky 1. The source of the error was neglect of the condition j wj ˆ 1 in computing the partial derivatives of wj with respect to wj. Note that expression (11) for the split±combine move acceptance ratio is correct as printed. Having made the correction, we repeated the calculations leading to all the numerical results reported in the paper. As might be expected, the e€ects of the error are noticeable but small. The maximum changes to any of the posterior probabilities p…kjy† presented in Tables 1 and 2 and Fig. 6 are 0.015, 0.011 and 0.020 respectively; in each case the maximum discrepancy occurs near the mode of the distributions, and so has little impact. The error in Fig. 2 is within plotting accuracy. In none of the ®gures is the visual impression altered, and none of our qualitative conclusions are a€ected. We are grateful to Tobias Ryden of Lund University for discovering this error, and we apologize for any confusion that it has caused.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  G. Box An analysis of transformations (with discussion) , 1964 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  R. Elston,et al.  A general model for the genetic analysis of pedigree data. , 1971, Human heredity.

[5]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[6]  N E Morton,et al.  Skewness in commingled distributions. , 1976, Biometrics.

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  C. Cannings,et al.  Probability functions on complex pedigrees , 1978, Advances in Applied Probability.

[9]  D. Binder Bayesian cluster analysis , 1978 .

[10]  N. Laird Nonparametric Maximum Likelihood Estimation of a Mixing Distribution , 1978 .

[11]  B. Lindsay The Geometry of Mixture Likelihoods: A General Theory , 1983 .

[12]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[13]  Dankmar Böhning,et al.  Numerical estimation of a probability measure , 1985 .

[14]  S. Weisberg Plots, transformations, and regression , 1985 .

[15]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[16]  G. McLachlan On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture , 1987 .

[17]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[19]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[20]  N. Mendell,et al.  Simulated percentage points for the null distribution of the likelihood ratio test for a mixture of two normals. , 1988, Biometrics.

[21]  A. Izenman,et al.  Philatelic Mixtures and Multimodal Densities , 1988 .

[22]  I. Pitas Markovian image models for image labeling and edge detection , 1988 .

[23]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[24]  Brandt,et al.  Simulations without critical slowing down: Ising and three-state Potts models. , 1989, Physical review. B, Condensed matter.

[25]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[26]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[27]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[28]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[29]  J. Besag,et al.  Sequential Monte Carlo p-values , 1991 .

[30]  Adele Cutler,et al.  Information Ratios for Validating Mixture Analysis , 1992 .

[31]  M. Degroot,et al.  Modeling lake-chemistry distributions: approximate Bayesian methods for estimating a finite-mixture model , 1992 .

[32]  Bruce G. Lindsay,et al.  Computer-assisted analysis of mixtures (C.A.MAN) statistical algorithms , 1992 .

[33]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[34]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[35]  M. West,et al.  A Bayesian method for classification and discrimination , 1992 .

[36]  Y. Bechtel,et al.  A population and family study N‐acetyltransferase using caffeine urinary metabolites , 1993, Clinical pharmacology and therapeutics.

[37]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[38]  J Besag,et al.  DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS , 1993 .

[39]  Thomas H. Short An algorithm for the detection and measurement of rail surface defects , 1993 .

[40]  Z. D. Feng,et al.  Using Bootstrap Likelihood Ratio in Finite Mixture Models , 1994 .

[41]  V. Lieshout Discussion contribution to U. Grenander and M.I. Miller: Representations of knowledge in complex systems , 1994 .

[42]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[43]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[44]  V. Johnson A Model for Segmentation and Analysis of Noisy Images , 1994 .

[45]  S. Crawford An Application of the Laplace Method to Finite Mixture Distributions , 1994 .

[46]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[47]  Walter R. Gilks,et al.  Hypothesis testing and model selection , 1995 .

[48]  Anthony C. Atkinson,et al.  Multivariate Transformations, Regression Diagnostics and Seemingly Unrelated Regression , 1995 .

[49]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[50]  S. Richardson,et al.  Mixtures of distributions: inference and estimation , 1995 .

[51]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[52]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[53]  Walter R. Gilks,et al.  Bayesian model comparison via jump diffusions , 1995 .

[54]  D. Böhning A review of reliable maximum likelihood algorithms for semiparametric mixture models , 1995 .

[55]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[56]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[57]  G. Celeux,et al.  Stochastic versions of the em algorithm: an experimental study in the mixture case , 1996 .

[58]  P Schlattmann,et al.  Covariate adjusted mixture models and disease mapping with the program DismapWin. , 1996, Statistics in medicine.

[59]  P. Müller,et al.  Bayesian curve fitting using multivariate normal mixtures , 1996 .

[60]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[61]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[62]  J. Bezdek,et al.  Estimating the Number of Components in a Normal Mixture , 1996 .

[63]  Murray Aitkin,et al.  A general maximum likelihood analysis of overdispersion in generalized linear models , 1996, Stat. Comput..

[64]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[65]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[66]  S Richardson,et al.  A Bayesian approach to multipoint mapping in nuclear families , 1997, Genetic epidemiology.

[67]  Michael A. West,et al.  Hierarchical Mixture Models in Neurological Transmission Analysis , 1997 .

[68]  N. Cressie,et al.  Object Identification Using Markov Random Field Segmentation Models at Multiple Resolutions of a Rectangular Lattice , 1997 .

[69]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[70]  S. Heath Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. , 1997, American journal of human genetics.

[71]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[72]  A. Raftery,et al.  Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes , 1998 .

[73]  A. Raftery,et al.  Detecting features in spatial point processes with clutter via model-based clustering , 1998 .

[74]  Brani Vidakovic,et al.  Bayesian Inference with Wavelets: Density Estimation , 1998 .