Thermal expansion properties of laser melting deposited Ti-6.5Al-2Zr-1Mo-1V alloy during α + β zone annealing

[1]  Jing Li,et al.  Variant selection in laser melting deposited α + β titanium alloy , 2016 .

[2]  Xin Lin,et al.  Texture and microstructure characterization in laser additive manufactured Ti–6Al–2Zr–2Sn–3Mo–1.5Cr–2Nb titanium alloy , 2015 .

[3]  N. Shamsaei,et al.  An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control , 2015 .

[4]  Yunzhi Wang,et al.  Microstructure and transformation texture evolution during α precipitation in polycrystalline α/β titanium alloys – A simulation study , 2015 .

[5]  E. A. Payzant,et al.  Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering , 2015, Metallurgical and Materials Transactions A.

[6]  Hua-ming Wang,et al.  Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy , 2014 .

[7]  F. Liu,et al.  The microstructure and mechanical behaviors of the Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy produced by laser melting deposition , 2014 .

[8]  H. M. Wang,et al.  The influences of anneal temperature and cooling rate on microstructure and tensile properties of laser deposited Ti–4Al–1.5Mn titanium alloy , 2014 .

[9]  W. King,et al.  An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel , 2014, Metallurgical and Materials Transactions A.

[10]  L. Dong,et al.  Effect of heat treatment on microstructure and tensile properties of laser deposited titanium alloy TC21 , 2014 .

[11]  H. M. Wang,et al.  Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe alloy , 2014 .

[12]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[13]  Hua-ming Wang,et al.  Effect of heat treatment on microstructure and mechanical properties of laser deposited Ti60A alloy , 2014 .

[14]  H. M. Wang,et al.  Subtransus triplex heat treatment of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy , 2014 .

[15]  Wang Huamin Materials' Fundamental Issues of Laser Additive Manufacturing for High-performance Large Metallic Components , 2014 .

[16]  Changmeng Liu,et al.  Microstructural characterization of laser melting deposited Ti–5Al-5Mo–5V–1Cr–1Fe near β titanium alloy , 2013 .

[17]  Yunzhi Wang,et al.  Variant selection during α precipitation in Ti–6Al–4V under the influence of local stress – A simulation study , 2013 .

[18]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[19]  A. A. Salem,et al.  Variant Selection During Cooling after Beta Annealing of Ti-6Al-4V Ingot Material , 2012, Metallurgical and Materials Transactions A.

[20]  M. Preuss,et al.  Residual stresses in laser direct metal deposited Waspaloy , 2011 .

[21]  Andrey V. Gusarov,et al.  Residual Stresses at Laser Surface Remelting and Additive Manufacturing , 2011 .

[22]  H. M. Wang,et al.  Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn , 2010 .

[23]  C. Cayron Importance of the α → β transformation in the variant selection mechanisms of thermomechanically processed titanium alloys , 2008 .

[24]  Michael B. Prime,et al.  Residual stresses in LENS® components using neutron diffraction and contour method , 2005 .

[25]  O. Ivasishin,et al.  Effect of phase transformation on texture formation in Ti-base alloys , 1998 .