Analysis of the power delivery path from the 12-V VR to the microprocessor

This paper offers a thorough analysis of the power delivery path. Based on the power delivery path model, the current slew rate of each loop is derived. The relationship between the inductor current slew rate of the voltage regulator (VR) and the bandwidth is also derived. Then, the level of the voltage spike across the capacitors of each loop is determined, after which the relationship between the bandwidth and the capacitance can be plotted. We find that for today's power delivery structure, the bulk capacitors can be eliminated as long as the bandwidth is pushed beyond 350 kHz. The experimental results of a 2-MHz two-stage 12-V VR verify this analysis.

[1]  F. C. Lee,et al.  VRM transient study and output filter design for future processors , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).

[2]  F.C. Lee,et al.  Optimal design of the active droop control method for the transient response , 2003, Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03..

[3]  Seth R. Sanders,et al.  An active clamp circuit for voltage regulation module (VRM) applications , 2001 .

[4]  Milan M. Jovanovic,et al.  Design considerations for low-voltage on-board DC/DC modules for next generations of data processing circuits , 1996 .

[5]  Peng Xu,et al.  Design considerations for VRM transient response based on the output impedance , 2002, APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335).

[6]  Fred C. Lee,et al.  Single shot transient suppressor (SSTS) for high current high slew rate microprocessor , 1999, APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285).

[7]  A. Waizman,et al.  Resonant free power network design using extended adaptive voltage positioning (EAVP) methodology , 2001 .