Sketch-Based Image Retrieval by Size-Adaptive and Noise-Robust Feature Description

We review available methods for Sketch-Based Image Retrieval (SBIR) and we discuss their limitations. Then, we present two SBIR algorithms: The first algorithm extracts shape features by using support regions calculated for each sketch point, and the second algorithm adapts the Shape Context descriptor to make it scale invariant and enhances its performance in presence of noise. Both algorithms share the property of calculating the feature extraction window according to the sketch size. Experiments and comparative evaluation with state-of-the-art methods show that the proposed algorithms are competitive in distinctiveness capability and robust against noise.

[1]  Tsuhan Chen,et al.  Hierarchical matching for retrieval of hand-drawn sketches , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[2]  Keisuke Kameyama,et al.  Towards making thinning algorithms robust against noise in sketch images , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[3]  B. S. Manjunath,et al.  Introduction to MPEG-7: Multimedia Content Description Interface , 2002 .

[4]  Tsuhan Chen,et al.  Trademark retrieval using contour-skeleton stroke classification , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[5]  Tracy Anne Hammond,et al.  PaleoSketch: accurate primitive sketch recognition and beautification , 2008, IUI '08.

[6]  David Gur,et al.  Automated freehand sketch segmentation using radial basis functions , 2009, Comput. Aided Des..

[7]  Josef Kittler,et al.  Robust and Efficient Shape Indexing through Curvature Scale Space , 1996, BMVC.

[8]  Joaquim A. Jorge,et al.  Retrieving Vector Graphics Using Sketches , 2004, Smart Graphics.

[9]  Guojun Lu,et al.  A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval , 2002 .

[10]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[11]  Rong Jin,et al.  Content-based image retrieval: An application to tattoo images , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[12]  Fen Zhang,et al.  An improved parallel thinning algorithm with two subiterations , 2008 .

[13]  Thomas Martin Deserno,et al.  Content-based image retrieval in medical applications: a novel multistep approach , 1999, Electronic Imaging.

[14]  Randall Davis,et al.  Magic Paper: Sketch-Understanding Research , 2007, Computer.

[15]  Anil K. Jain,et al.  Retrieval of on-line hand-drawn sketches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[16]  Tsuhan Chen,et al.  User-independent retrieval of free-form hand-drawn sketches , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  Daehyun Kim,et al.  A curvature estimation for pen input segmentation in sketch-based modeling , 2006, Comput. Aided Des..

[18]  Kaspar Riesen,et al.  Towards the unification of structural and statistical pattern recognition , 2012, Pattern Recognit. Lett..

[19]  Toshikazu Kato,et al.  A sketch retrieval method for full color image database-query by visual example , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[20]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[21]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[22]  Patrick Gros,et al.  Robust content-based image searches for copyright protection , 2003, MMDB '03.

[23]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[25]  Wolfgang Effelsberg,et al.  Enhancing curvature scale space features for robust shape classification , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[26]  Yoshiki Kumagai,et al.  Query-by-Sketch Image Retrieval Using Edge Relation Histogram , 2013, MVA.

[27]  Shuang Liang,et al.  Sketch retrieval and relevance feedback with biased SVM classification , 2008, Pattern Recognit. Lett..

[28]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[29]  Mario Costa Sousa,et al.  Sketch-based modeling: A survey , 2009, Comput. Graph..

[30]  Keisuke Kameyama,et al.  Content-Based Image Retrieval of Cultural Heritage Symbols by Interaction of Visual Perspectives , 2011, Int. J. Pattern Recognit. Artif. Intell..

[31]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[32]  Abdolah Chalechale,et al.  Sketch-based image matching Using Angular partitioning , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[33]  Ignazio Gallo,et al.  Key Sample Point Selection: An Improvement of Shape Context Algorithm in Image Retrieval , 2010 .

[34]  Michael J. Swain,et al.  WebSeer: An Image Search Engine for the World Wide Web , 1996 .

[35]  Hayko Riemenschneider,et al.  Efficient Partial Shape Matching of Outer Contours , 2009, ACCV.

[36]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[37]  Josef Kittler,et al.  Curvature scale space image in shape similarity retrieval , 1999, Multimedia Systems.

[38]  Benjamin Bustos,et al.  An Improved Histogram of Edge Local Orientations for Sketch-Based Image Retrieval , 2010, DAGM-Symposium.