A 2.1 M☉ Pulsar Measured by Relativistic Orbital Decay

PSR J0751+1807 is a millisecond pulsar in a circular 6 hr binary system with a helium white dwarf secondary. Through high-precision pulse timing measurements with the Arecibo and Effelsberg radio telescopes, we have detected the decay of its orbit due to emission of gravitational radiation. This is the first detection of the relativistic orbital decay of a low-mass, circular binary pulsar system. The measured rate of change in orbital period, corrected for acceleration biases, is = (-6.4 ± 0.9) × 10-14. Interpreted in the context of general relativity, and combined with measurement of Shapiro delay, it implies a pulsar mass of 2.1 ± 0.2 M☉, the most massive pulsar measured. This adds to the emerging trend toward relatively high neutron star masses in neutron star-white dwarf binaries. In addition, there is some evidence for an inverse correlation between pulsar mass and orbital period in these systems. We consider alternatives to the general relativistic analysis of the data, and we use the pulsar timing data to place limits on violations of the strong equivalence principle.

[1]  James G. Williams,et al.  Williams et al. Reply (to the Comment by Dumin on"Progress in Lunar Laser Ranging Tests of Relativistic Gravity") , 2006, gr-qc/0612171.

[2]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[3]  S. Ord,et al.  The Mass of a Millisecond Pulsar , 2005, astro-ph/0507420.

[4]  E. Bloom 22nd Texas Symposium on Relativistic Astrophysics , 2005 .

[5]  L. Burderi,et al.  The role of general relativity in the evolution of low-mass X-ray binaries , 2005, astro-ph/0502422.

[6]  D. Nice,et al.  Masses, Parallax, and Relativistic Timing of the PSR J1713+0747 Binary System , 2004, astro-ph/0410488.

[7]  Belgium,et al.  Cosmic microwave background constraints on the strong equivalence principle , 2004, astro-ph/0407208.

[8]  J. Lattimer,et al.  The Physics of Neutron Stars , 2004, Science.

[9]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[10]  I. Stairs Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.

[11]  S. Ord,et al.  Self-Consistency of Relativistic Observables with General Relativity in the White Dwarf-Neutron Star Binary PSR J1141–6545 , 2003, astro-ph/0307468.

[12]  I. Stairs,et al.  Studies of the Relativistic Binary Pulsar PSR B1534+12. I. Timing Analysis , 2002, astro-ph/0208357.

[13]  Amsterdam,et al.  Physical parameters of the high-mass X-ray binary 4U1700-37 , 2002, astro-ph/0207334.

[14]  D. Bhattacharya Evolution of neutron star magnetic fields , 2002 .

[15]  Y. Wiaux,et al.  Gravitational dipole radiations from binary systems , 2001, gr-qc/0109062.

[16]  M. Bailes,et al.  A test of general relativity from the three-dimensional orbital geometry of a binary pulsar , 2001, Nature.

[17]  F. Camilo,et al.  Precision timing measurements of PSR J1012+5307 , 2001, astro-ph/0102309.

[18]  M. Sarna,et al.  The helium white dwarf in two pulsars: too cool in PSR J0751+1807 and too hot in PSR J1012+5307? , 2001 .

[19]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[20]  D. Nice,et al.  A baseband recorder for radio pulsar observations , 1999, astro-ph/9912272.

[21]  J. Orosz,et al.  The optical light curves of Cygnus X-2 (V1341 Cyg) and the mass of its neutron star , 1999, astro-ph/9901177.

[22]  D. Chakrabarty,et al.  Neutron Star Mass Measurements. I. Radio Pulsars , 1998, astro-ph/9803260.

[23]  J. Cordes,et al.  A Millisecond Pulsar in a 6 Hour Orbit: PSR J0751+1807 , 1995 .

[24]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[25]  E. S. Phinney,et al.  Pulsars as probes of newtonian dynamical systems , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[26]  I. Goldman PSR 0655 + 64 : an astrophysical laboratory for testing relativistic gravity theories , 1992 .

[27]  K. Nordtvedt G-dot/G and a cosmological acceleration of gravitationally compact bodies. , 1990, Physical review letters.

[28]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[29]  C. Will,et al.  Gravitational Radiation, Close Binary Systems, and the Brans-dicke Theory of Gravity , 1989 .

[30]  R. Blandford,et al.  The binary pulsar: physical processes, possible companions, and evolutionary histories. , 1976 .

[31]  L. Esposito,et al.  Properties of the Hulse--Taylor binary pulsar system , 1975 .

[32]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[33]  M. Floquet,et al.  Astronomical Society of the Pacific , 1916, Nature.

[34]  Accepted??? Received??? , 2003 .

[35]  Editor-in-Chief B. Iyer,et al.  Living Reviews in Relativity , 2002 .

[36]  Philipp Podsiadlowski,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 21/08/00 EVOLUTIONARY BINARY SEQUENCES FOR LOW- AND INTERMEDIATE-MASS X-RAY BINARIES , 2001 .

[37]  Dan Werthimer,et al.  A PROGRAMMABLE 36-MHZ DIGITAL FILTER BANK FOR RADIO SCIENCE , 1997 .

[38]  T. Damour,et al.  On the orbital period change of the binary pulsar PSR 1913+16 , 1991 .