Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity.

We report on the coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to a fiber-based microcavity at room temperature. Investigating the very same NV center inside the cavity and in free space allows us to systematically explore a regime of phonon-assisted cavity feeding. Making use of the NV center's strongly broadened emission, we realize a widely tunable, narrow band single photon source. A master equation model well reproduces our experimental results and predicts a transition into a Purcell-enhanced emission regime at low temperatures.

[1]  Edward H. Chen,et al.  Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. , 2014, Nano letters.

[2]  J. Wrachtrup,et al.  Highly sensitive detection of physiological spins in a microfluidic device. , 2013, Nano letters.

[3]  E. Hu,et al.  Increased negatively charged nitrogen-vacancy centers in fluorinated diamond , 2013 .

[4]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[5]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[6]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[7]  C. Becher,et al.  Low temperature investigations and surface treatments of colloidal narrowband fluorescent nanodiamonds , 2013, 1302.3188.

[8]  Andrei Faraon,et al.  Quantum photonic devices in single-crystal diamond , 2013 .

[9]  Carlo Bradac,et al.  Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. , 2013, Small.

[10]  Oliver Benson,et al.  Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry. , 2013, Physical review letters.

[11]  Dmitry Budker,et al.  Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity , 2013 .

[12]  F. Reinhard,et al.  Single defect center scanning near-field optical microscopy on graphene. , 2013, Nano letters.

[13]  A. Mohtashami,et al.  Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments , 2012, 1212.5172.

[14]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, Nature Physics.

[15]  E. Togan,et al.  Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry–Perot cavity , 2012, 1211.4515.

[16]  Jakob Reichel,et al.  Single ion coupled to an optical fiber cavity. , 2012, Physical review letters.

[17]  J R Maze,et al.  Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions. , 2012, Physical review letters.

[18]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[19]  C. Hu,et al.  Generating entanglement with low-Q-factor microcavities , 2012, 1208.0455.

[20]  M. Markham,et al.  Demonstration of entanglement-by-measurement of solid-state qubits , 2012, Nature Physics.

[21]  N. Manson,et al.  Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. , 2012, Physical review letters.

[22]  Christoph Becher,et al.  Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. , 2012, Optics express.

[23]  T. Umeda,et al.  Long coherence time of spin qubits in 12C enriched polycrystalline chemical vapor deposition diamond , 2012, 1206.4260.

[24]  N. Flowers-Jacobs,et al.  Fiber-cavity-based optomechanical device , 2012, 1206.3558.

[25]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[26]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[27]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[28]  Charles Santori,et al.  Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. , 2012, Nano letters.

[29]  A. Krueger,et al.  Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond , 2012 .

[30]  Jan Meijer,et al.  Charge state manipulation of qubits in diamond , 2012, Nature Communications.

[31]  Daniel A. Lidar,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[32]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[33]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[34]  A Faraon,et al.  Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[35]  M. Markham,et al.  Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[36]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[37]  D. Awschalom,et al.  Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond. , 2011, Physical review letters.

[38]  Hannes Bernien,et al.  Two-photon quantum interference from separate nitrogen vacancy centers in diamond. , 2011, Physical review letters.

[39]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[40]  A. Muller,et al.  Feedback-controlled laser fabrication of micromirror substrates. , 2011, The Review of scientific instruments.

[41]  T. Umeda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[42]  S. Zhang,et al.  Dynamic Jahn-Teller effect in the NV(-) center in diamond. , 2011, Physical review letters.

[43]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[44]  D. Hunger,et al.  Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.

[45]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[46]  Jan Meijer,et al.  Creation of colour centres in diamond by collimated ion‐implantation through nano‐channels in mica , 2011 .

[47]  D. Steinmetz Ni/Si-basierte Farbzentren in Diamant als Einzelphotonenquellen , 2011 .

[48]  P. Bouř,et al.  Ab initio modeling of fused silica, crystal quartz, and water Raman spectra , 2011 .

[49]  L. Hollenberg,et al.  Theory of the ground state spin of the NV- center in diamond: I. Fine structure, hyperfine structure, and interactions with electric, magnetic and strain fields , 2011, 1111.5882.

[50]  A. Schell,et al.  A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. , 2011, The Review of scientific instruments.

[51]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[52]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[53]  P. Barclay,et al.  Hybrid Nanocavity Resonant Enhancement of Color Center Emission in Diamond , 2011, 1105.5137.

[54]  D D Awschalom,et al.  Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. , 2011, Physical review letters.

[55]  Caizhuang Wang,et al.  Vibrational modes and lattice distortion of a nitrogen-vacancy center in diamond from first-principles calculations , 2011, 1103.3736.

[56]  Oliver Benson,et al.  Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. , 2011, Optics express.

[57]  P. Barclay,et al.  Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities , 2011, 1102.5372.

[58]  An ab initio study of local vibration modes of the nitrogen-vacancy center in diamond , 2011 .

[59]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[60]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[61]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[62]  O. Benson,et al.  Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens , 2010, 1011.1822.

[63]  Hannes Bernien,et al.  Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond , 2010, 1010.1192.

[64]  P. Grangier,et al.  Controling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry–Perot microcavity , 2010, 1010.0779.

[65]  H. Eghlidi,et al.  A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency , 2010, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[66]  Neil B. Manson,et al.  The negatively charged nitrogen-vacancy centre in diamond: the electronic solution , 2010, 1008.5224.

[67]  W. Pfaff,et al.  Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system , 2010, 1008.4097.

[68]  J. Achard,et al.  Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN− molecules through nanoapertures , 2010, 1008.1483.

[69]  M. Lončar,et al.  Design and focused ion beam fabrication of single crystal diamond nanobeam cavities , 2010, 1008.1431.

[70]  G. Solomon,et al.  Ultra-high finesse, low mode volume Fabry-Perot microcavity , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[71]  J. Rarity,et al.  Nanofabricated solid immersion lenses registered to single emitters in diamond , 2010, 1012.1135.

[72]  L. Hollenberg,et al.  Optically induced spin polarisation of the NV centre in diamond: role of electron-vibration interaction , 2010, 1011.2840.

[73]  Jason M. Smith,et al.  Femtoliter tunable optical cavity arrays. , 2010, Optics letters.

[74]  Efthimios Kaxiras,et al.  Properties of nitrogen-vacancy centers in diamond: the group theoretic approach , 2010, 1010.1338.

[75]  C. Bougerol,et al.  Subnanosecond spectral diffusion measurement using photon correlation , 2010, 1207.0676.

[76]  D. Budker,et al.  Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond , 2010, 1009.4747.

[77]  D. Awschalom,et al.  Excited-state spin coherence of a single nitrogen–vacancy centre in diamond , 2010 .

[78]  D. Budker,et al.  Optical properties of the nitrogen-vacancy singlet levels in diamond , 2010, 1009.0032.

[79]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[80]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[81]  T. Gacoin,et al.  Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds , 2010, 1008.2276.

[82]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[83]  Christian Eggeling,et al.  Metastable dark States enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. , 2010, Nano letters.

[84]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[85]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[86]  F. Jelezko,et al.  Creation efficiency of nitrogen-vacancy centres in diamond , 2010 .

[87]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[88]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[89]  Hannes Bernien,et al.  Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. , 2010, Physical review letters.

[90]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[91]  T. Stöferle,et al.  A scanning microcavity for in-situ control of single-molecule emission , 2010, 1005.0236.

[92]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[93]  L. Andreani,et al.  Controlling the dynamics of a coupled atom-cavity system by pure dephasing , 2010, 1002.3753.

[94]  M. Feng,et al.  Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. , 2010, Physical review letters.

[95]  C. Santori,et al.  Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation , 2010, 1001.5449.

[96]  M. Rohlfing,et al.  Excited states of the negatively charged nitrogen-vacancy color center in diamond , 2010 .

[97]  James C. Greer,et al.  Spin-polarization mechanisms of the nitrogen-vacancy center in diamond. , 2010, Nano letters.

[98]  H. Giessen,et al.  Fabrication of a fiber-based microcavity with spherical concave fiber tips , 2010 .

[99]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[100]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[101]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[102]  Glenn S. Solomon,et al.  Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity , 2009, 0910.4658.

[103]  A. Laucht,et al.  Phonon-assisted transitions from quantum dot excitons to cavity photons , 2009, 0910.3749.

[104]  Oliver Benson,et al.  On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator , 2009 .

[105]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[106]  P. Barclay,et al.  Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[107]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[108]  Masaki Ozawa,et al.  A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. , 2009, ACS nano.

[109]  Kurt Aulenbacher,et al.  Fluorescence and spin properties of defects in single digit nanodiamonds. , 2009, ACS nano.

[110]  O. Benson,et al.  Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator , 2009 .

[111]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[112]  A. Dousse,et al.  Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. , 2009, Physical review letters.

[113]  R. Hanson,et al.  Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center , 2009, 0903.3336.

[114]  Mats Larsson,et al.  Composite optical microcavity of diamond nanopillar and silica microsphere. , 2009, Nano letters.

[115]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[116]  S. Reitzenstein,et al.  Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy , 2009, 0902.3455.

[117]  Thomas F. Krauss,et al.  Light scattering and Fano resonances in high-Q photonic crystal nanocavities , 2009 .

[118]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[119]  N. Manson,et al.  Time-averaging within the excited state of the nitrogen-vacancy centre in diamond , 2009, 0902.2256.

[120]  P. Barclay,et al.  Coherent interference effects in a nano-assembled diamond NV center cavity-QED system. , 2008, Optics express.

[121]  A. Auffèves,et al.  Pure emitter dephasing: A resource for advanced solid-state single-photon sources , 2008, 0808.0820.

[122]  Jeremy L O'Brien,et al.  Cavity enhanced spin measurement of the ground state spin of an NV center in diamond , 2009 .

[123]  T. Asano,et al.  Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. , 2008, Optics express.

[124]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[125]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[126]  Oliver Benson,et al.  One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. , 2008, Nano letters.

[127]  T. Suhr,et al.  Influence of pure dephasing on emission spectra from single photon sources , 2008, 0807.3589.

[128]  G. Balasubramanian,et al.  Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance , 2008, 0807.2379.

[129]  R. Hanson,et al.  Excited-state spectroscopy using single spin manipulation in diamond. , 2008, Physical review letters.

[130]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[131]  S. Armstrong,et al.  Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies , 2008, 0806.0895.

[132]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[133]  F. Schmidt-Kaler,et al.  Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution , 2008 .

[134]  P. Hemmer,et al.  Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. , 2008, Physical review letters.

[135]  Yumin Shen,et al.  Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals , 2008 .

[136]  Peter Haag,et al.  Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation , 2008 .

[137]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.

[138]  A. Auffèves,et al.  Spontaneous emission spectrum of a two-level atom in a very-high- Q cavity , 2007, 0710.2421.

[139]  Raymond G. Beausoleil,et al.  Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond , 2008 .

[140]  J. O'Brien Optical Quantum Computing , 2007, Science.

[141]  Neil B. Manson,et al.  Issues concerning the nitrogen-vacancy center in diamond , 2007 .

[142]  R. Hanson,et al.  Fabrication and Characterization of Two-Dimensional Photonic Crystal Microcavities in Nanocrystalline Diamond , 2007, 0709.1161.

[143]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[144]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[145]  M. Ozawa,et al.  Preparation and Behavior of Brownish, Clear Nanodiamond Colloids , 2007 .

[146]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[147]  James E. Butler,et al.  Observation of whispering gallery modes in nanocrystalline diamond microdisks , 2007 .

[148]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[149]  M. Kamp,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[150]  L. Childress,et al.  Supporting Online Material for , 2006 .

[151]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[152]  Hailin Wang,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[153]  P. Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical review letters.

[154]  D. Hunger,et al.  Stable fiber-based Fabry-Pérot cavity , 2006, physics/0606231.

[155]  R. Hanson,et al.  Polarization and readout of coupled single spins in diamond. , 2006, Physical review letters.

[156]  M. Raymer,et al.  Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime , 2006, quant-ph/0601108.

[157]  P. Grangier,et al.  Photoluminescence of single colour defects in 50 nm diamond nanocrystals , 2005, cond-mat/0509512.

[158]  Neil B. Manson,et al.  Photo-ionization of the nitrogen-vacancy center in diamond , 2005 .

[159]  E. A. Curtis,et al.  Microfabricated high-finesse optical cavity with open access and small volume , 2005, quant-ph/0506234.

[160]  F. Jelezko,et al.  Generation of single color centers by focused nitrogen implantation , 2005, cond-mat/0505063.

[161]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[162]  P. Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2004, quant-ph/0408040.

[163]  D. Hunger Herstellung und Charakterisierung von Faserresonatoren hoher Finesse , 2005 .

[164]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[165]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[166]  Thierry Gacoin,et al.  Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination , 2004 .

[167]  G. Berman,et al.  Spin Microscope Based on Optically Detected Magnetic Resonance , 2004, quant-ph/0405143.

[168]  Matthew Sellars,et al.  Optical spin polarisation of the N-V centre in diamond , 2004 .

[169]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[170]  P. Grangier,et al.  Experimental open-air quantum key distribution with a single-photon source , 2004, quant-ph/0402110.

[171]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[172]  I. Sildos,et al.  Strong Jahn–Teller effect in the excited state: Anomalous temperature dependence of the zero-phonon line , 2003 .

[173]  W. Hänsel,et al.  Magnetic microchip traps and single–atom detection , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[174]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[175]  Jianda Shao,et al.  Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors , 2003 .

[176]  K. Vahala Optical microcavities , 2003, Nature.

[177]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical review letters.

[178]  A. T. Collins The Fermi level in diamond , 2002 .

[179]  A. Imamoğlu,et al.  Quantum dot cavity-QED in the presence of strong electron-phonon interactions , 2001, OFC 2001.

[180]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[181]  Jun Ye,et al.  Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity , 2001, quant-ph/0101103.

[182]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[183]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[184]  P. Grangier,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[185]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[186]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[187]  Sze M. Tan,et al.  A computational toolbox for quantum and atomic optics , 1999 .

[188]  M. Vaněček,et al.  Photoionization cross-section of dominant defects in CVD diamond , 1999 .

[189]  W H Wang,et al.  Annealing effect on ion-beam-sputtered titanium dioxide film. , 1998, Optics letters.

[190]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[191]  A. Stoneham,et al.  Comment on “Electronic structure of the N- V center in diamond: Theory” , 1997 .

[192]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[193]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[194]  Rand,et al.  Electronic structure of the N-V center in diamond: Theory. , 1997, Physical review. B, Condensed matter.

[195]  Jones,et al.  The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. , 1996, Physical review letters.

[196]  Mita,et al.  Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. , 1996, Physical review. B, Condensed matter.

[197]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[198]  Jean-Michel Raimond,et al.  Very high-Q whispering-gallery mode resonances observed on fused silica microspheres , 1993 .

[199]  G. Rempe Atoms in an optical cavity: quantum electrodynamics in confined space , 1993 .

[200]  He,et al.  Paramagnetic resonance of photoexcited N-V defects in diamond. I. Level anticrossing in the 3A ground state. , 1993, Physical review. B, Condensed matter.

[201]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[202]  J. Raimond,et al.  Vacuum Rabi Splitting Observed on a Microscopic Atomic Sample in a Microwave Cavity , 1992 .

[203]  Brown,et al.  Spin dynamics and electronic states of N-V centers in diamond by EPR and four-wave-mixing spectroscopy. , 1991, Physical review letters.

[204]  N. Manson,et al.  Raman heterodyne detected electron-nuclear-double-resonance measurements of the nitrogen-vacancy center in diamond. , 1990, Optics letters.

[205]  N. Manson,et al.  Optical hole-bleaching by level anti-crossing and cross relaxation in the N-V centre in diamond , 1989 .

[206]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[207]  Neil B. Manson,et al.  Optically detected spin coherence of the diamond N-V centre in its triplet ground state , 1988 .

[208]  Neil B. Manson,et al.  Two-laser spectral hole burning in a colour centre in diamond , 1987 .

[209]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[210]  A. T. Collins,et al.  Luminescence decay time of the 1.945 eV centre in type Ib diamond , 1983 .

[211]  R. Feynman Simulating physics with computers , 1999 .

[212]  G. Davies REVIEW ARTICLE: The Jahn-Teller effect and vibronic coupling at deep levels in diamond , 1981 .

[213]  R. Stolen,et al.  Nonlinearity in fiber transmission , 1980, Proceedings of the IEEE.

[214]  W. Lukosz Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation , 1979 .

[215]  J Walker,et al.  Optical absorption and luminescence in diamond , 1979 .

[216]  G. Davies Dynamic Jahn-Teller distortions at trigonal optical centres in diamond , 1979 .

[217]  J H N Loubser,et al.  REVIEW: Electron spin resonance in the study of diamond , 1978 .

[218]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power , 1977 .

[219]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles , 1977 .

[220]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[221]  J. Stone,et al.  Raman Spectral Characterization of Pure and Doped Fused Silica Optical Fibers , 1975 .

[222]  G. Davies,et al.  Vibronic spectra in diamond , 1974 .

[223]  C. Norris,et al.  Photoluminescence associated with the 1.673, 1.944 and 2.498 eV centres in diamond , 1971 .

[224]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[225]  R. Pound,et al.  Electronic frequency stabilization of microwave oscillators. , 1946, The Review of scientific instruments.

[226]  Physics Reports , 2022 .