Grape stem detection using regression convolutional neural networks

[1]  Ana Maria Mendonça,et al.  A Pixel-Wise Distance Regression Approach for Joint Retinal Optical Disc and Fovea Detection , 2018, MICCAI.

[2]  E. J. van Henten,et al.  Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper , 2013 .

[3]  Gang Liu,et al.  Auto Recognition of Navigation Path for Harvest Robot Based on Machine Vision , 2010, CCTA.

[4]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[5]  H. T. Søgaard,et al.  Application Accuracy of a Machine Vision-controlled Robotic Micro-dosing System , 2007 .

[6]  Zhen Liu,et al.  Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD) Vision Sensor with Artificial Illumination , 2018, Sensors.

[7]  Saeid Minaei,et al.  Vision-based pest detection based on SVM classification method , 2017, Comput. Electron. Agric..

[8]  Jochen Hemming,et al.  Angle estimation between plant parts for grasp optimisation in harvest robots , 2019, Biosystems Engineering.

[9]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[10]  Eleni Vrochidou,et al.  Machine Vision Systems in Precision Agriculture for Crop Farming , 2019, J. Imaging.

[11]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Hong Cheng,et al.  Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks , 2017, J. Imaging.

[13]  Chengliang Liu,et al.  Algorithm based on marker-controlled watershed transform for overlapping plant fruit segmentation , 2009 .

[14]  Qi Wang,et al.  Automated Crop Yield Estimation for Apple Orchards , 2012, ISER.

[15]  Isabelle Bloch,et al.  Shape-based Segmentation of Tomatoes for Agriculture Monitoring , 2014, ICPRAM.

[16]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[17]  Chao Chen,et al.  Fruit Detection, Segmentation and 3D Visualisation of Environments in Apple Orchards , 2019, Comput. Electron. Agric..

[18]  Xin Zhang,et al.  Computer vision‐based tree trunk and branch identification and shaking points detection in Dense‐Foliage canopy for automated harvesting of apples , 2020, J. Field Robotics.

[19]  Huang Lin,et al.  Overlapped fruit recognition for citrus harvesting robot in natural scenes , 2017, 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE).

[20]  Yang Yu,et al.  Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN , 2019, Comput. Electron. Agric..

[21]  Mitsuji Monta,et al.  A Machine Vision System for Tomato Cluster Harvesting Robot , 2009 .

[22]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[23]  Stephan Hussmann,et al.  Improving efficiency of organic farming by using a deep learning classification approach , 2018, Comput. Electron. Agric..

[24]  Rory C. Flemmer,et al.  Development of an autonomous kiwifruit picking robot , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[25]  Zahid Iqbal,et al.  An automated detection and classification of citrus plant diseases using image processing techniques: A review , 2018, Comput. Electron. Agric..

[26]  Quoc Bao Truong,et al.  Automatic dragon fruit counting using adaptive thresholds for image segmentation and shape analysis , 2017, 2017 4th NAFOSTED Conference on Information and Computer Science.

[27]  W. Simonton,et al.  Identification of Plant Parts Using Color and Geometric Image Data , 1993 .

[28]  Manuel A. Armada,et al.  Combination of RGB and Multispectral Imagery for Discrimination of Cabernet Sauvignon Grapevine Elements , 2013, Sensors.

[29]  Shigehiko Hayashi,et al.  Machine Vision Algorithm for Robots to Harvest Strawberries in Tabletop Culture Greenhouses , 2009 .

[30]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[31]  Thomas Rath,et al.  Novel image processing approach for solving the overlapping problem in agriculture , 2013 .

[32]  Nong Sang,et al.  Detecting citrus fruits and occlusion recovery under natural illumination conditions , 2015, Comput. Electron. Agric..

[33]  Xiangjun Zou,et al.  Vision-based extraction of spatial information in grape clusters for harvesting robots , 2016 .

[34]  Asghar Mahmoudi,et al.  Modeling and comparison of fuzzy and on/off controller in a mushroom growing hall , 2016 .

[35]  Wolfgang Heinemann,et al.  Development of a row guidance system for an autonomous robot for white asparagus harvesting , 2011 .

[36]  T. Bakker,et al.  Autonomous navigation using a robot platform in a sugar beet field , 2011 .

[37]  Li Li,et al.  In-field pineapple recognition based on monocular vision. , 2010 .

[38]  Malrey Lee,et al.  An yield estimation in citrus orchards via fruit detection and counting using image processing , 2017, Comput. Electron. Agric..

[39]  Yoshisada Nagasaka,et al.  Development of Robot Combine Harvester for Beans using CAN Bus Network , 2013 .

[40]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Noboru Noguchi,et al.  Pumpkin harvesting robotic end-effector , 2020, Comput. Electron. Agric..

[42]  Jizhong Deng,et al.  Extraction of Litchi Stem Based on Computer Vision under Natural Scene , 2011, 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring.

[43]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[44]  Yael Edan,et al.  Integration of perception capabilities in gripper design using graspability maps , 2016 .

[45]  Xiong Chen,et al.  A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard , 2018, Comput. Ind..

[46]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[47]  Sanjiv Singh,et al.  Automated Visual Yield Estimation in Vineyards , 2014, J. Field Robotics.

[48]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[49]  Eldert J. van Henten,et al.  Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation , 2020, Comput. Electron. Agric..

[50]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Yutaka Kikuchi,et al.  A Robot System for Paddy Field Farming in Japan , 2013 .

[52]  Xiangjun Zou,et al.  A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot , 2017 .

[53]  G. A. Papakostas,et al.  Toward Big Data Manipulation for Grape Harvest Time Prediction by Intervals’ Numbers Techniques , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[54]  Yael Edan,et al.  Robotic melon harvesting , 2000, IEEE Trans. Robotics Autom..

[55]  E. J. van Henten,et al.  Stem localization of sweet-pepper plants using the support wire as a visual cue , 2014 .

[56]  Vassilis G. Kaburlasos,et al.  Semantic Segmentation of Vineyard Images Using Convolutional Neural Networks , 2020, EANN.

[57]  E. J. van Henten,et al.  Optimal manipulator design for a cucumber harvesting robot , 2009 .

[58]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[59]  Eleni Vrochidou,et al.  Grapes Visual Segmentation for Harvesting Robots Using Local Texture Descriptors , 2019, ICVS.

[60]  Giovanni Muscato,et al.  A prototype of an orange picking robot: past history, the new robot and experimental results , 2005, Ind. Robot.