Chromogenic sensing of biogenic amines using a chameleon probe and the red-green-blue readout of digital camera images.

We report on sensing spots containing an amine reactive chromogenic probe and a green fluorescent (amine insensitive) reference dye incorporated in a hydrogel matrix on a solid support. Such spots enable rapid and direct determination of primary amines and, especially, biogenic amines (BA). A distinct color change from blue to red occurs on dipping the test spots into a pH 9.0 sample containing primary amines. BAs can be determined in the concentration range from 0.01 to 10 mM within 15 min, enabling rapid, qualitative, and semiquantitative evaluation. In the “photographic” approach, the typically 4-7.5-fold increase in fluorescence intensity of the probe at 620 nm along with the constant green fluorescence at 515 nm of a reference dye are used for quantitation of BAs. The sensing spots are photoexcited with high-power 505 nm light-emitting diodes (LEDs) in a black box. A digital picture is acquired with a commercially available digital camera, and the color information is extracted via red-green-blue (RGB) readout. The ratio of the intensities of the red (signal) channel and the green (reference) channel yields pseudocolor pictures and calibration plots.

[1]  Neal A. Rakow,et al.  A colorimetric sensor array for odour visualization , 2000, Nature.

[2]  Axel Duerkop,et al.  Novel type of general protein assay using a chromogenic and fluorogenic amine-reactive probe. , 2005, Analytical biochemistry.

[3]  Olga Domínguez-Renedo,et al.  Disposable biosensors for determination of biogenic amines. , 2010, Analytica chimica acta.

[4]  D. Fairclough,et al.  A Rapid Dipstick Test for Histamine in Tuna , 1995 .

[5]  M.H.Silla Santos,et al.  Biogenic amines: their importance in foods. , 1996, International journal of food microbiology.

[6]  Jianhua Yang,et al.  A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines , 2010, Sensors.

[7]  Steve L. Taylor,et al.  Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. , 1989, Journal of toxicology. Clinical toxicology.

[8]  Martin Link,et al.  Photographing oxygen distribution. , 2010, Angewandte Chemie.

[9]  T. Nelson,et al.  Multi-layered analyses using directed partitioning to identify and discriminate between biogenic amines. , 2007, The Analyst.

[10]  M R Neuman,et al.  Development of a diamine biosensor. , 1997, Talanta.

[11]  Avijit Sen,et al.  Molecular recognition and discrimination of amines with a colorimetric array. , 2005, Angewandte Chemie.

[12]  J. Pickova,et al.  New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. , 2004, Journal of chromatography. A.

[13]  A. B. Descalzo,et al.  Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. , 2006, Chemical communications.

[14]  Özgül Özdestan,et al.  A method for benzoyl chloride derivatization of biogenic amines for high performance liquid chromatography. , 2009 .

[15]  Xiaoru Wang,et al.  Optical oxygen sensors move towards colorimetric determination , 2010 .

[16]  Liang Feng,et al.  An Optoelectronic Nose for Detection of Toxic Gases , 2009, Nature chemistry.

[17]  Kun-Lin Yang,et al.  Polymer stabilized cholesteric liquid crystal arrays for detecting vaporous amines. , 2010, The Analyst.

[18]  O. Wolfbeis,et al.  Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain , 2009 .

[19]  I. Fleet,et al.  Determination of biogenic diamines with a vaporisation derivatisation approach using solid-phase microextraction gas chromatography-mass spectrometry. , 2008, Food chemistry.

[20]  W. Staruszkiewicz,et al.  Histamine Test Kit Comparison , 2000 .

[21]  O. Wolfbeis,et al.  Determination of picomolar concentrations of proteins using novel amino reactive chameleon labels and capillary electrophoresis laser‐induced fluorescence detection , 2005, Electrophoresis.

[22]  G. Ashcroft,et al.  Tryptamine in the Blood and Urine of a Patient with a Carcinoid Tumour , 1963, Nature.

[23]  R. D'Hooge,et al.  Consequences of renal mass reduction on amino acid and biogenic amine levels in nephrectomized mice , 2000, Amino Acids.

[24]  Umberto De Marchi,et al.  Amine oxidases in apoptosis and cancer. , 2006, Biochimica et biophysica acta.

[25]  S. Bover-Cid,et al.  Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food. , 2009, Journal of chromatography. A.

[26]  Daniel Filippini,et al.  Chemical sensing with familiar devices. , 2006, Angewandte Chemie.

[27]  K. Kumar,et al.  A simple and rapid method for colorimetric determination of histamine in fish flesh , 2005 .

[28]  O. Wolfbeis,et al.  Chameleon labels for staining and quantifying proteins. , 2004, Angewandte Chemie.

[29]  Armağan Önal,et al.  A review: Current analytical methods for the determination of biogenic amines in foods , 2007 .

[30]  Carlos Rodríguez-Caso,et al.  Biogenic Amines and Polyamines: Similar Biochemistry for Different Physiological Missions and Biomedical Applications , 2003, Critical reviews in biochemistry and molecular biology.

[31]  Colette McDonagh,et al.  Optical chemical sensors. , 2008, Chemical reviews.

[32]  K. Imahori,et al.  A new simple enzymatic assay method for urinary polyamines in humans. , 1983, Cancer research.