Estimating trees from filtered data: identifiability of models for morphological phylogenetics.
暂无分享,去创建一个
[1] John A Rhodes,et al. Identifying evolutionary trees and substitution parameters for the general Markov model with invariable sites. , 2008, Mathematical biosciences.
[2] H. Núñez,et al. Mesozoic Fishes 4 - Homology and Phylogeny , 2008 .
[3] J. Farris. A Probability Model for Inferring Evolutionary Trees , 1973 .
[4] J. Huelsenbeck,et al. Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.
[5] Susanne Schulmeister,et al. Inconsistency of maximum parsimony revisited. , 2004, Systematic biology.
[6] S. Gupta,et al. Statistical decision theory and related topics IV , 1988 .
[7] W. Massey. A basic course in algebraic topology , 1991 .
[8] A. Wald. Note on the Consistency of the Maximum Likelihood Estimate , 1949 .
[9] T. Jukes. CHAPTER 24 – Evolution of Protein Molecules , 1969 .
[10] Martina Ramirez. Homology as a parsimony problem: a dynamic homology approach for morphological data , 2007, Cladistics : the international journal of the Willi Hennig Society.
[11] J. Felsenstein,et al. An evolutionary model for maximum likelihood alignment of DNA sequences , 1991, Journal of Molecular Evolution.
[12] P. Hofstaetter. [Similarity]. , 2020, Psyche.
[13] B. Rannala. Identi(cid:142)ability of Parameters in MCMC Bayesian Inference of Phylogeny , 2002 .
[14] W. Hennig. Phylogenetic Systematics , 2002 .
[15] P. Lewis. A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.
[16] Joseph T. Chang,et al. Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. , 1996, Mathematical biosciences.
[17] John P. Huelsenbeck,et al. MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..
[18] P. Sereno. Logical basis for morphological characters in phylogenetics , 2007, Cladistics : the international journal of the Willi Hennig Society.
[19] Olivier Gascuel,et al. Reconstructing evolution : new mathematical and computational advances , 2007 .
[20] E. Allman,et al. Phylogenetic invariants for the general Markov model of sequence mutation. , 2003, Mathematical biosciences.
[21] Michael D. Hendy,et al. Parsimony Can Be Consistent , 1993 .
[22] H. Munro,et al. Mammalian protein metabolism , 1964 .
[23] Elizabeth S. Allman,et al. Phylogenetic ideals and varieties for the general Markov model , 2004, Adv. Appl. Math..
[24] Igor B. Rogozin,et al. In search of lost introns , 2007, ISMB/ECCB.
[25] Mathieu Blanchette,et al. Exact and Heuristic Algorithms for the Indel Maximum Likelihood Problem , 2007, J. Comput. Biol..
[26] P. Buneman. The Recovery of Trees from Measures of Dissimilarity , 1971 .
[27] Joseph Felsenstein,et al. PHYLOGENIES FROM RESTRICTION SITES: A MAXIMUM‐LIKELIHOOD APPROACH , 1992, Evolution; international journal of organic evolution.
[28] M. Steel. Recovering a tree from the leaf colourations it generates under a Markov model , 1994 .
[29] O. Rieppel,et al. The Poverty of Taxonomic Characters , 2007 .
[30] E. Mayr,et al. Methods and Principles of Systematic Zoology , 1953 .
[31] J. Felsenstein. Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .
[32] László A. Székely,et al. Reconstructing Trees When Sequence Sites Evolve at Variable Rates , 1994, J. Comput. Biol..
[33] A. Henderson. Phylogenetic analysis of morphological data , 2002, Brittonia.
[34] J. Neyman. MOLECULAR STUDIES OF EVOLUTION: A SOURCE OF NOVEL STATISTICAL PROBLEMS* , 1971 .
[35] J. Felsenstein,et al. Invariants of phylogenies in a simple case with discrete states , 1987 .
[36] J. A. Cavender. Taxonomy with confidence , 1978 .