Gain control in a proprioceptive feedback loop as a prerequisite for working close to instability

In the artificially closed femur-tibia control system of stick insects oscillations were induced in 3 different ways: Increasing the phase-shift by introducing an electronic delay, afference sign reversal and coupling the tibia to an inert mass. In all 3 cases the oscillations stopped after some time. The gain of the open-loop system was significantly smaller after the oscillations. Afference sign reversal by surgically crossing of the receptor apodeme of the femoral chordotonal organ for 25–85 days does not lead to altered characteristics of the control loop. When sinusoidal passive movements are forced upon the intact femur-tibia joint the forces resisting these movements do not decrease with time. In contrast to direct stimulation of the femoral chordotonal organ, these passive movements also influence the contralateral leg. The experiments show that the gain-control system of the femur-tibia control loop of stick insects consists of at least two components: A sensitization system (with inputs from many kinds of stimuli indicating some kind of disturbance) increases the gain of all reflex loops. A specific habituation-like system decreases the gain with repetitive stimulation only of one control system.

[1]  U. Bässler [On the regulation of the position of the femur-tibial joint of the walking-stick insect Carausius morosus at rest and in motion]. , 1967, Kybernetik.

[2]  Fachbereich Biologie der Universit Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus , 1973 .

[3]  G A Horridge,et al.  The organization of inputs to motoneurons of the locust metathoracic leg. , 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  J. Vedel The Antennal Motor System of the Rock Lobster: Competitive Occurrence of Resistance and Assistance Reflex Patterns Originating from the Same Proprioceptor , 1980 .

[5]  F. Clarac,et al.  Reversal of a Walking Leg Reflex Elicited by a Muscle Receptor , 1981 .

[6]  U. Bässler,et al.  EFFECTS OF AFFERENCE SIGN REVERSAL ON MOTOR ACTIVITY IN WALKING STICK INSECTS (CARAUSIUS MOROSUS) , 1981 .

[7]  J. Vedel,et al.  Reflex Reversal Resulting From Active Movements in the Antenna of the Rock Lobster , 1982 .

[8]  F. Clarac,et al.  Short Communication: Reversal of An Intersegmental Reflex Elicited by a Muscle Receptor Organ , 1983 .

[9]  Professor Dr. Ulrich Bässler Neural Basis of Elementary Behavior in Stick Insects , 1983, Studies of Brain Function.

[10]  U. Bässler Influence of femoral chordotonal organ afferences on ecdysis and on the development of motor programmes in locust larvae , 1983 .

[11]  S. Zill Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. , 1985, The Journal of experimental biology.

[12]  K. Sillar,et al.  Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. , 1986, Journal of neurophysiology.

[13]  U. Bssler Afferent control of walking movements in the stick insectCuniculina impigra: II. Reflex reversal and the release of the swing phase in the restrained foreleg , 1986 .

[14]  U. Carlberg Phasmida: a biological review (insecta) , 1986 .

[15]  U. Bässler,et al.  A BIOLOGICAL FEEDBACK CONTROL SYSTEM WITH ELECTRONIC INPUT: THE ARTIFICIALLY CLOSED FEMUR-TIBIA CONTROL SYSTEM OF STICK INSECTS , 1986 .

[16]  A. Prochazka Sensorimotor gain control: A basic strategy of motor systems? , 1989, Progress in Neurobiology.

[17]  M. Burns,et al.  The firing pattern of the locust (Schistocerca gregaria americana) mesothoracic femoral motor axons in resistance reflexes and during walking on a treadmill , 1990 .

[18]  R. Kittmann,et al.  GAIN CONTROL IN THE FEMUR-TIBIA FEEDBACK SYSTEM OF THE STICK INSECT , 1991 .

[19]  U. Bässler The femur-tibia control system of stick insects — a model system for the study of the neural basis of joint control , 1993, Brain Research Reviews.

[20]  Ulrich Bässler,et al.  Effects of crossing the receptor apodeme of the femoral chordotonal organ on walking, jumping and singing in locusts and grasshoppers , 1979, Journal of comparative physiology.

[21]  U. Bässler Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus , 1973, Kybernetik.

[22]  U. Bässler,et al.  Reversal of a reflex to a single motoneuron in the stick insect Çarausius morosus , 1976, Biological Cybernetics.

[23]  U. Bässler,et al.  Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus , 1974, Kybernetik.

[24]  Ulrich Bässler,et al.  Mass-induced oscillations in the femur-tibia control system of stick insects , 2004, Biological Cybernetics.

[25]  U. Bässler,et al.  Zur Regelung der Stellung des femur-Tibia-Gelenkes im Mesothorax der Wanderheuschrecke Schistocerca gregaria (Forskål) , 1978, Biological Cybernetics.

[26]  Bernhard Möhl,et al.  ‘Biological noise’ and plasticity of sensorimotor pathways in the locust flight system , 2004, Journal of Comparative Physiology A.

[27]  Ansgar Büschges,et al.  Octopaminergic modulation of the femoral chordotonal organ in the stick insect , 1993, Journal of Comparative Physiology A.

[28]  U. Bässler Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier , 1974, Kybernetik.

[29]  Bernhard Möhl,et al.  Short-term learning during flight control inLocusta migratoria , 1988, Journal of Comparative Physiology A.

[30]  U. Bässler Sensory control of leg movement in the stick insect Carausius morosus , 1977, Biological Cybernetics.