Real-time optical recording of beta1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol.

Antagonists of beta-adrenergic receptors (beta-ARs) have become a main therapeutic regimen for the treatment of heart failure even though the mechanisms of their beneficial effects are still poorly understood. Here, we used fluorescent resonance energy transfer-based (FRET-based) approaches to directly monitor activation of the beta(1)-AR and downstream signaling. While the commonly used beta-AR antagonists metoprolol, bisoprolol, and carvedilol displayed varying degrees of inverse agonism on the Gly389 variant of the receptor (i.e., actively switching off the beta(1)-AR), surprisingly, only carvedilol showed very specific and marked inverse agonist effects on the more frequent Arg389 variant. These specific effects of carvedilol on the Arg389 variant of the beta(1)-AR were also seen for control of beating frequency in rat cardiac myocytes expressing the 2 receptor variants. This FRET sensor permitted direct observation of activation of the beta(1)-AR in living cells in real time. It revealed that beta(1)-AR variants dramatically differ in their responses to diverse beta blockers, with possible consequences for their clinical use.

[1]  M. Lohse,et al.  GS Activation Is Time-limiting in Initiating Receptor-mediated Signaling* , 2006, Journal of Biological Chemistry.

[2]  L. Lazzeroni,et al.  A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure , 2006 .

[3]  D. Cooper,et al.  A Specific Pattern of Phosphodiesterases Controls the cAMP Signals Generated by Different Gs-Coupled Receptors in Adult Rat Ventricular Myocytes , 2006, Circulation research.

[4]  P. Wolf,et al.  Heart disease and stroke statistics--2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. , 2006, Circulation.

[5]  M. Lohse,et al.  Dynamics of receptor/G protein coupling in living cells , 2005, The EMBO journal.

[6]  H. Bruck,et al.  The Arg389Gly beta1-adrenoceptor polymorphism and catecholamine effects on plasma-renin activity. , 2005, Journal of the American College of Cardiology.

[7]  M. Lohse,et al.  Molecular basis of inverse agonism in a G protein–coupled receptor , 2005, Nature chemical biology.

[8]  Julie A. Johnson,et al.  Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. , 2005, Pharmacogenetics and genomics.

[9]  Mark H Ellisman,et al.  A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells , 2005, Nature Methods.

[10]  Michel Bouvier,et al.  Real-time monitoring of receptor and G-protein interactions in living cells , 2005, Nature Methods.

[11]  K. Lorenz,et al.  The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy , 2004, Nature Medicine.

[12]  Martin J. Lohse,et al.  Novel Single Chain cAMP Sensors for Receptor-induced Signal Propagation*♦ , 2004, Journal of Biological Chemistry.

[13]  R. Lefkowitz,et al.  Anti-beta(1)-adrenergic receptor antibodies and heart failure: causation, not just correlation. , 2004, The Journal of clinical investigation.

[14]  W. Colledge,et al.  Markedly reduced effects of (−)‐isoprenaline but not of (−)‐CGP12177 and unchanged affinity of β‐blockers at Gly389‐β1‐adrenoceptors compared to Arg389‐β1‐adrenoceptors , 2004 .

[15]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[16]  M. Lohse β-Adrenoceptor polymorphisms and heart failure , 2004 .

[17]  M. Lohse,et al.  Gi protein activation in intact cells involves subunit rearrangement rather than dissociation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Liggett,et al.  Pharmacology and physiology of human adrenergic receptor polymorphisms. , 2003, Annual review of pharmacology and toxicology.

[19]  Martin J. Lohse,et al.  What Is the Role of &bgr;-Adrenergic Signaling in Heart Failure? , 2003, Circulation research.

[20]  Zhaoqian Liu,et al.  Gly389Arg polymorphism of β1‐adrenergic receptor is associated with the cardiovascular response to metoprolol , 2003, Clinical pharmacology and therapeutics.

[21]  C. Stein,et al.  The Gly389Arg β1‐adrenergic receptor polymorphism: A predictor of response to β‐blocker treatment? , 2003 .

[22]  G. Dorn,et al.  β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure , 2003, Nature Medicine.

[23]  I. Zineh,et al.  β1‐Adrenergic Receptor Polymorphisms and Antihypertensive Response to Metoprolol , 2003, Clinical pharmacology and therapeutics.

[24]  M. Lohse,et al.  Measurement of the millisecond activation switch of G protein–coupled receptors in living cells , 2003, Nature Biotechnology.

[25]  U. B. Nair,et al.  A common β1‐adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to β‐blockade , 2003 .

[26]  M. Bristow Antiadrenergic therapy of chronic heart failure: surprises and new opportunities. , 2003, Circulation.

[27]  S. Kardia,et al.  Synergistic polymorphisms of the β1- and α2c-adrenergic receptors and the risk of congestive heart failure ☆ , 2003 .

[28]  A. Miyawaki Visualization of the spatial and temporal dynamics of intracellular signaling. , 2003, Developmental cell.

[29]  S. Kardia,et al.  Synergistic Polymorphisms of β1- and α2C-Adrenergic Receptors and the Risk of Congestive Heart Failure , 2002 .

[30]  K. Fong,et al.  Conservation of the cardiostimulant effects of (-)-norepinephrine across Ser49Gly and Gly389Arg beta(1)-adrenergic receptor polymorphisms in human right atrium in vitro. , 2002, Journal of the American College of Cardiology.

[31]  Robert J. Lefkowitz,et al.  Seven-transmembrane-spanning receptors and heart function , 2002, Nature.

[32]  S. Ikeda,et al.  Functional expression and FRET analysis of green fluorescent proteins fused to G‐protein subunits in rat sympathetic neurons , 2001, The Journal of physiology.

[33]  M. Lohse,et al.  Constitutive Activity of the Human β1-Adrenergic Receptor in β1-Receptor Transgenic Mice , 2001 .

[34]  L. Groop,et al.  Polymorphism in the &bgr;1-Adrenergic Receptor Gene and Hypertension , 2001, Circulation.

[35]  P. Schnabel,et al.  Characterization of β1‐selectivity, adrenoceptor‐Gs‐protein interaction and inverse agonism of nebivolol in human myocardium , 2001, British journal of pharmacology.

[36]  B. Fu,et al.  The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. , 2000, Clinical science.

[37]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[38]  M. Flesch,et al.  Different intrinsic activities of bucindolol, carvedilol and metoprolol in human failing myocardium , 2000, British journal of pharmacology.

[39]  M. Michel,et al.  Adrenergic and muscarinic receptors in the human heart. , 1999, Pharmacological reviews.

[40]  M. Lohse,et al.  Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Chemtob,et al.  Inverse agonist activities of β‐adrenoceptor antagonists in rat myocardium , 1999 .

[42]  D. A. Mason,et al.  A Gain-of-function Polymorphism in a G-protein Coupling Domain of the Human β1-Adrenergic Receptor* , 1999, The Journal of Biological Chemistry.

[43]  S. Ball,et al.  Common polymorphisms of β1-adrenoceptor: identification and rapid screening assay , 1999, The Lancet.

[44]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[45]  B. Fredholm,et al.  Comparative pharmacology of human adenosine receptor subtypes – characterization of stably transfected receptors in CHO cells , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[46]  E. Lakatta,et al.  Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. , 1997, The American journal of physiology.

[47]  S. Liggett,et al.  Chimeric Mutagenesis of Putative G-protein Coupling Domains of the α2A-Adrenergic Receptor , 1996, The Journal of Biological Chemistry.

[48]  M. Caron,et al.  Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. , 1988, The Journal of biological chemistry.

[49]  J. Cohn,et al.  Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. , 1984, The New England journal of medicine.

[50]  J. Melnick,et al.  Au-antigen particles. , 1970, The Lancet.

[51]  J. S. Stephenson,et al.  Pharmacology of a new adrenergic beta-receptor-blocking compound (Nethalide). , 1962, Lancet.

[52]  Stepan Gambaryan,et al.  Fluorescent sensors for rapid monitoring of intracellular cGMP , 2005, Nature Methods.

[53]  T. Hynes,et al.  Cellular Localization of GFP-Tagged α Subunits , 2004 .

[54]  K. Klotz,et al.  Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells , 2003, Naunyn-Schmiedeberg's Archives of Pharmacology.

[55]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .