Intramolecular hydrophobic interactions are critical mediators of STAT5 dimerization

[1]  T. Barbui,et al.  Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both , 2016, Leukemia.

[2]  Randy J. Zauhar,et al.  An SH2 domain model of STAT5 in complex with phospho-peptides define “STAT5 Binding Signatures” , 2015, Journal of Computer-Aided Molecular Design.

[3]  T. Berg,et al.  Nanomolar Inhibitors of the Transcription Factor STAT5b with High Selectivity over STAT5a , 2015, Angewandte Chemie.

[4]  Can Alkan,et al.  Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells , 2015, Nature Communications.

[5]  T. Rausch,et al.  The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse , 2014, Haematologica.

[6]  R. Moriggl,et al.  Inhibition of STAT5: A therapeutic option in BCR-ABL1-driven leukemia , 2014, OncoTarget.

[7]  David E. Muench,et al.  Nanomolar-Potency Small Molecule Inhibitor of STAT5 Protein , 2014, ACS medicinal chemistry letters.

[8]  K. Elenitoba-Johnson,et al.  Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. , 2014, Blood.

[9]  T. Waldmann,et al.  Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas , 2014, Leukemia.

[10]  O. Lohi,et al.  Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[11]  S. Mustjoki,et al.  Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. , 2013, Blood.

[12]  W. Vainchenker,et al.  JAK/STAT signaling in hematological malignancies , 2013, Oncogene.

[13]  Luigi Atzori,et al.  Structural and Dynamical Insights on HLA-DR2 Complexes That Confer Susceptibility to Multiple Sclerosis in Sardinia: A Molecular Dynamics Simulation Study , 2013, PloS one.

[14]  J. Griffin,et al.  The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations. , 2012, Genes & cancer.

[15]  L. S. Swapna,et al.  Extent of Structural Asymmetry in Homodimeric Proteins: Prevalence and Relevance , 2012, PloS one.

[16]  M. Farrar,et al.  The role of STAT5 in lymphocyte development and transformation. , 2012, Current opinion in immunology.

[17]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[18]  Ioannis Xenarios,et al.  T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension , 2011, Nucleic Acids Res..

[19]  G. Müller-Newen,et al.  The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3 , 2009, Journal of Cell Science.

[20]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[21]  L. Hennighausen,et al.  Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia , 2010, EMBO molecular medicine.

[22]  M. Kerenyi,et al.  Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. , 2009, The American journal of pathology.

[23]  B. Aggarwal,et al.  Signal Transducer and Activator of Transcription‐3, Inflammation, and Cancer , 2009, Annals of the New York Academy of Sciences.

[24]  L. Kenner,et al.  Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade. , 2008, Blood.

[25]  L. Hennighausen,et al.  Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. , 2008, Genes & development.

[26]  E. Vellenga,et al.  STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. , 2007, Blood.

[27]  A. Alonso,et al.  Cutting Edge: Selective Tyrosine Dephosphorylation of Interferon-Activated Nuclear STAT5 by the VHR Phosphatase1 , 2007, The Journal of Immunology.

[28]  K. D. Bunting,et al.  STAT5 signaling in normal and pathologic hematopoiesis. , 2007, Frontiers in bioscience : a journal and virtual library.

[29]  G. V. Goersch,et al.  cDNA cloning and 1.75 Å crystal structure determination of PPL2, an endochitinase and N‐acetylglucosamine‐binding hemagglutinin from Parkia platycephala seeds , 2006, The FEBS journal.

[30]  A. Sali,et al.  A composite score for predicting errors in protein structure models , 2006, Protein science : a publication of the Protein Society.

[31]  R. Ilaria,et al.  STAT5 signaling is required for the efficient induction and maintenance of CML in mice. , 2006, Blood.

[32]  L. Hennighausen,et al.  Stat5a/b are essential for normal lymphoid development and differentiation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Becker,et al.  Structure of the Unphosphorylated STAT5a Dimer* , 2005, Journal of Biological Chemistry.

[34]  Glen B. Legge,et al.  An AMBER/DYANA/MOLMOL Phosphorylated Amino Acid Library Set and Incorporation into NMR Structure Calculations , 2005, Journal of biomolecular NMR.

[35]  Lenwood S. Heath,et al.  H++: a server for estimating pKas and adding missing hydrogens to macromolecules , 2005, Nucleic Acids Res..

[36]  E. Wagner,et al.  Stat5 tetramer formation is associated with leukemogenesis. , 2005, Cancer cell.

[37]  O. Silvennoinen,et al.  STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. , 2004, Cytokine & growth factor reviews.

[38]  R. Marmorstein,et al.  Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. , 2004, Journal of molecular biology.

[39]  David R. Klug,et al.  Large and Fast Relaxations inside a Protein: Calculation and Measurement of Reorganization Energies in Alcohol Dehydrogenase , 2002 .

[40]  B. Hess Convergence of sampling in protein simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  有好 浩一 Constitutive activation of STAT5 by a point mutation in the SH2 domain , 2002 .

[42]  T Pawson,et al.  SH2 domains, interaction modules and cellular wiring. , 2001, Trends in cell biology.

[43]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[44]  A J Olson,et al.  Structural symmetry and protein function. , 2000, Annual review of biophysics and biomolecular structure.

[45]  A. Miyajima,et al.  Constitutive Activation of STAT5 by a Point Mutation in the SH2 Domain* , 2000, The Journal of Biological Chemistry.

[46]  S. Becker,et al.  Three-dimensional structure of the Stat3β homodimer bound to DNA , 1998, Nature.

[47]  R. Cherry,et al.  Mobility of cell surface receptors: a re‐evaluation , 1998, FEBS letters.

[48]  G. McGaughey,et al.  pi-Stacking interactions. Alive and well in proteins. , 1998, The Journal of biological chemistry.

[49]  J. Darnell,et al.  Crystal Structure of a Tyrosine Phosphorylated STAT-1 Dimer Bound to DNA , 1998, Cell.

[50]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[51]  Alexander D. MacKerell,et al.  A molecular mechanics force field for NAD+ NADH, and the pyrophosphate groups of nucleotides , 1997, J. Comput. Chem..

[52]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[53]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[54]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[55]  T. Pawson,et al.  SH2 domains recognize specific phosphopeptide sequences , 1993, Cell.

[56]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[57]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[58]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.