Criteria for developing castable, creep-resistant aluminum-based alloys – A review

Abstract We describe four criteria for the selection of alloying elements capable of producing castable, precipitation-strengthened Al alloys with high-temperature stability and strength: these alloying elements must (i) be capable of forming a suitable strengthening phase, (ii) show low solid solubility in Al, (iii) low diffusivity in Al, and (iv) retain the ability for the alloy to be conventionally solidified.With regard to criterion (i), we consider those systems forming Al3M trialuminide compounds with a cubic L12 crystal structure, which are chemically and structurally analogous to Ni3Al in the Ni-based superalloys. Eight elements, clustered in the same region of the periodic table, fulfill criterion (i): the first Group 3 transition metal (Sc), the three Group 4 transition metals (Ti, Zr, Hf) and the four latest lanthanide elements (Er, Tm, Yb, Lu). Based on a review of the existing literature, these elements are assessed in terms of criteria (ii) and (iii), which satisfy the need for a dispersion in Al with slow coarsening kinetics, and criterion (iv), which is discussed based on the binary phase diagrams.

[1]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[2]  D. Seidman,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II-coarsening of Al3(Sc1−xZrx) precipitates , 2005 .

[3]  D. Seidman,et al.  Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys , 2005 .

[4]  D. Seidman,et al.  Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy , 2005 .

[5]  B. Murty,et al.  Synthesis and stability of L12–Al3Ti by mechanical alloying , 2004 .

[6]  X. Bian,et al.  Microstructural characterization and microhardness of rapidly solidified Al–Ce alloys , 2002 .

[7]  S. A. Kori,et al.  Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying , 2002 .

[8]  A. Mcalister,et al.  The Al-Hf (aluminum-hafnium) system , 1998 .

[9]  J. Murray The Al-Sc (aluminum-scandium) system , 1998 .

[10]  H. Mehrer,et al.  Diffusion of Implanted 3d-Transition Elements in Aluminium Part II: Pressure Dependence / Diffusion implantierter 3d-Übergangselemente in Aluminium Teil II: Druckabhängigkeit , 1995 .

[11]  H. Mehrer,et al.  Diffusion of Implanted 3d-Transition Elements in Aluminium Part I: Temperature Dependence / Diffusion implantierter 3d-Übergangselemente in Aluminium Teil I: Temperaturabhängigkeit , 1995 .

[12]  W. M. Rainforth,et al.  Phase constitution in melt-spun A1–10 wt% Y , 1994 .

[13]  J. Nie,et al.  Development of high temperature dispersion strengthening in rapidly quenched AlTiX alloys , 1994 .

[14]  J. Foley,et al.  Formation of metastable Li2Al3Y through rapid solidification processing , 1994 .

[15]  P. Voorhees,et al.  Ostwald ripening in concentrated alloys , 1994 .

[16]  E. George,et al.  Deformation and Fracture of L12 Trialuminides , 1991 .

[17]  W. W. Milligan,et al.  Alloying of Al3Ti to Form Cubic Phases , 1991 .

[18]  P. Nash,et al.  Formation of metastable L12 phases in Al3Zr and Al-12.5%X-25%Zr (X ≡ Li, CR, Fe, Ni, Cu) , 1991 .

[19]  F. Froes,et al.  Rapid solidification of lightweight metal alloys , 1989 .

[20]  C. Suryanarayana,et al.  Structure and transformation behavior of a rapidly solidified Al6.4wt.%Hf alloy , 1989 .

[21]  D. Dimiduk,et al.  High temperature phase equilibria of the Ll2 composition in the AlTiNi, AlTiFe, and AlTiCu systems , 1989 .

[22]  E. Arzt,et al.  The kinetics of dislocation climb over hard particles—I. Climb without attractive particle-dislocation interaction , 1988 .

[23]  N. Adkins,et al.  Rapid solidification of peritectic aluminium alloys , 1988 .

[24]  David B. Williams,et al.  Convergent beam electron diffraction study of Al3Zr in Al-Zr AND Al-Li-Zr alloys , 1987 .

[25]  R. Lewis,et al.  Coarsening behavior of Ll2 structured Al3(Zrx V1−x) precipitates in rapidly solidified AlZrV alloy , 1987 .

[26]  D. Skinner,et al.  Dispersion strengthened AlFeVSi alloys , 1986 .

[27]  K. Okazaki,et al.  High strength alFeV alloys at elevated temperatures produced by rapid quenching from the melt , 1984 .

[28]  C. Suryanarayana,et al.  A TEM study of decomposition behavior of a melt-quenched Al-Zr alloy , 1984 .

[29]  Morris E. Fine,et al.  Lattice parameter variation of Al3 (Ti, V, Zr, Hf) in Al-2 AT.% (Ti, V, Zr, Hf) alloys , 1983 .

[30]  M. Fine,et al.  Lattice parameters of Al3 (ZrxTi1−x) vs. x in Al-2 at.% (Ti + Zr) alloys , 1982 .

[31]  D. Beke,et al.  Determination of diffusion coefficients of Zn, Co and Ni in aluminium by a resistometric method , 1978 .

[32]  S. Fujikawa,et al.  Impurity diffusion in aluminum , 1978 .

[33]  G. Ibe,et al.  Erstarrungs- und Ausscheidungsverhalten von Aluminium-Zirkonium-Legierungen , 1977, International Journal of Materials Research.

[34]  Ruth Kempson,et al.  Presupposition and the delimitation of semantics , 1975 .

[35]  J. Cannon,et al.  Effect of high pressure on the crystal structures of lanthanide trialuminides , 1975 .

[36]  H. W. Kerr,et al.  On equilibrium and non-equilibrium peritectic transformations , 1973 .

[37]  E. Nes Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloys , 1972 .

[38]  D. Oelschlägel,et al.  Strukturelle Untersuchung der Ausscheidung in einer Aluminiumlegierung mit 1,1 Gew.-% Zr , 1969 .

[39]  O. Izumi,et al.  On the decomposition of a highly supersaturated AlZr solid solution , 1969 .

[40]  N. Ryum Precipitation and recrystallization in an A1-0.5 WT.% Zr-alloy , 1969 .

[41]  照男 大橋,et al.  急冷凝固したAl- (0.2~2wt%) Zr合金の時効性について , 1968 .

[42]  K. Schubert,et al.  Über den Aufbau einiger zu TiAl3 verwandter Legierungsreihen , 1965 .

[43]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[44]  P. D. Merica,et al.  The heat treatment of duralumin , 1919 .

[45]  C. Parnall News and Comment , 1914, The Psychiatric Quarterly.

[46]  D. Seidman,et al.  Composition evolution of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy: experiments and computations. , 2006 .

[47]  H. W. Kerr,et al.  Solidification of peritectic alloys , 1996 .

[48]  S. Fujikawa Solid state diffusion in light metals (I) , 1996, Journal of Japan Institute of Light Metals.

[49]  K. Kumar Ternary intermetallics in aluminiumrefractory metal-X systems (X = V, Cr, Mn, Fe, Co, Ni, Cu, Zn) , 1990 .

[50]  R. Fleischer,et al.  Intermetallic Compounds for Strong High-Temperature Materials: Status and Potential , 1989 .

[51]  D. G. McCartney Grain refining of aluminium and its alloys using inoculants , 1989 .

[52]  V. Hadjicontis,et al.  Interconnection of the diffusion coefficients of various elements in aluminum , 1988 .

[53]  L. Arnberg,et al.  Evidence of metastable phase in Al–Ti–(B) system , 1982 .

[54]  L. Arnberg,et al.  Intermetallic particles in Al–Ti–B–type master alloys for grain refinement of aluminium , 1982 .

[55]  T. W. Clyne,et al.  Stability of intermetallic aluminides in liquid aluminium and implications for grain refinement , 1980 .

[56]  Tomio Kobayashi,et al.  Prolonged Aging of an Al-0.22% Zr Alloy , 1973 .

[57]  S. Fujikawa,et al.  Diffusion of zirconium in aluminum , 1973 .

[58]  A. Claire On the theory of impurity diffusion in metals , 1962 .