Stability of Calderón inverse conductivity problem in the plane

Abstract It is proved that, in two dimensions, the Calderon inverse conductivity problem in Lipschitz domains is stable when the conductivities are Holder continuous with any exponent α > 0 .

[1]  Russell M. Brown Global Uniqueness in the Impedance-Imaging Problem for Less Regular Conductivities , 1996 .

[2]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[3]  Kari Astala,et al.  A boundary integral equation for Calderón's inverse conductivity problem , 2006 .

[4]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[5]  Robert V. Kohn,et al.  IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASUREMENTS AT THE BOUNDARY. , 1983 .

[6]  J. Sylvester,et al.  Inverse boundary value problems at the boundary—continuous dependence , 1988 .

[7]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[8]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[9]  Gunther Uhlmann,et al.  Complex geometrical optics solutions for Lipschitz conductivities , 2003 .

[10]  Olli Lehto,et al.  Quasiconformal mappings in the plane , 1973 .

[11]  D. Faraco Milton's conjecture on the regularity of solutions to isotropic equations , 2003 .

[12]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[13]  S. Siltanen,et al.  Mapping Properties of the Nonlinear Fourier Transform in Dimension Two , 2007 .

[14]  Giovanni Alessandrini,et al.  Singular solutions of elliptic equations and the determination of conductivity by boundary measurements , 1990 .

[15]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[16]  Tadeusz Iwaniec,et al.  Geometric Function Theory and Non-linear Analysis , 2002 .

[17]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[18]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[19]  Russell M. Brown,et al.  Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result , 2001 .

[20]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .

[21]  P. Koskela GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs) By TADEUSZ IWANIEC and GAVEN MARTIN: 552 pp., £75.00, ISBN 0-19-85029-4 (Oxford University Press, 2001) , 2002 .

[22]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[23]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[24]  Rodolfo H. Torres,et al.  Uniqueness in the Inverse Conductivity Problem for Conductivities with 3/2 Derivatives in Lp, p > 2n , 2003 .

[25]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[26]  Bünyamin Yildiz,et al.  On the inverse conductivity problem , 1998, Appl. Math. Comput..

[27]  G. Temple,et al.  Generalized Analytic Functions , 1964 .

[28]  Adrian I. Nachman Multidimensional inverse scattering and nonlinear equations , 1988 .

[29]  John Sylvester,et al.  A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .

[30]  Juan Antonio Barceló,et al.  Stability of the Inverse Conductivity Problem in the Plane for Less Regular Conductivities , 2001 .

[31]  M. Schechter Principles of Functional Analysis , 1971 .

[32]  Russell M. Brown,et al.  Estimates for the scattering map associated to a two-dimensional first order system , 2004 .

[33]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[34]  Kari Astala,et al.  Convex integration and the L p theory of elliptic equations. , 2004 .

[35]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[36]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .